EBK ORGANIC CHEMISTRY AS A SECOND LANGU
EBK ORGANIC CHEMISTRY AS A SECOND LANGU
3rd Edition
ISBN: 9781118203774
Author: Klein
Publisher: YUZU
Question
Book Icon
Chapter 16, Problem 52PP

(a)

Interpretation Introduction

Interpretation:

For the given each of the electrocyclic reactions, the product formed should be determined.

Concept introduction:

  • Electrocyclic reaction is a concerted cyclization reaction of conjugated polyenes (π-system), in which one π-bond is converted into an σ-bond and remaining π-bonds shift their positions. Thereby the newly formed σ-bond connects the two ends of π-system to form a ring.
  • The mechanism of the ring formation in the Electrocyclic reaction is drawn by using arrows representing the forming σ-bond and the shifting of π-bonds in the π-system of a polyene.
  • The reaction conditions (thermal or photochemical) controls the product in such a way that the rotation for end lobes (ring closure) of the HOMO of conjugated (π-system) polyene.
  • According to Woodward-Hoffmann rule for thermal and photochemical Electrocyclic reactions,
π-systems Thermal Photochemical
6- π-electrons Disrotatory Conrotatory
8- π-electrons Conrotatory Disrotatory

To determine: the major product formed for each of the given electrocyclic reactions.

(b)

Interpretation Introduction

Interpretation:

For the given each of the electrocyclic reactions, the product formed should be determined.

Concept introduction:

  • Electrocyclic reaction is a concerted cyclization reaction of conjugated polyenes (π-system), in which one π-bond is converted into an σ-bond and remaining π-bonds shift their positions. Thereby the newly formed σ-bond connects the two ends of π-system to form a ring.
  • The mechanism of the ring formation in the Electrocyclic reaction is drawn by using arrows representing the forming σ-bond and the shifting of π-bonds in the π-system of a polyene.
  • The reaction conditions (thermal or photochemical) controls the product in such a way that the rotation for end lobes (ring closure) of the HOMO of conjugated (π-system) polyene.
  • According to Woodward-Hoffmann rule for thermal and photochemical Electrocyclic reactions,
π-systems Thermal Photochemical
6- π-electrons Disrotatory Conrotatory
8- π-electrons Conrotatory Disrotatory

To determine: the major product formed for each of the given electrocyclic reactions.

(c)

Interpretation Introduction

Interpretation:

For the given each of the electrocyclic reactions, the product formed should be determined.

Concept introduction:

  • Electrocyclic reaction is a concerted cyclization reaction of conjugated polyenes (π-system), in which one π-bond is converted into an σ-bond and remaining π-bonds shift their positions. Thereby the newly formed σ-bond connects the two ends of π-system to form a ring.
  • The mechanism of the ring formation in the Electrocyclic reaction is drawn by using arrows representing the forming σ-bond and the shifting of π-bonds in the π-system of a polyene.
  • The reaction conditions (thermal or photochemical) controls the product in such a way that the rotation for end lobes (ring closure) of the HOMO of conjugated (π-system) polyene.
  • According to Woodward-Hoffmann rule for thermal and photochemical Electrocyclic reactions,
π-systems Thermal Photochemical
6- π-electrons Disrotatory Conrotatory
8- π-electrons Conrotatory Disrotatory

To determine: the major product formed for each of the given electrocyclic reactions.

 (d)

Interpretation Introduction

Interpretation:

For the given each of the electrocyclic reactions, the product formed should be determined.

Concept introduction:

  • Electrocyclic reaction is a concerted cyclization reaction of conjugated polyenes (π-system), in which one π-bond is converted into an σ-bond and remaining π-bonds shift their positions. Thereby the newly formed σ-bond connects the two ends of π-system to form a ring.
  • The mechanism of the ring formation in the Electrocyclic reaction is drawn by using arrows representing the forming σ-bond and the shifting of π-bonds in the π-system of a polyene.
  • The reaction conditions (thermal or photochemical) controls the product in such a way that the rotation for end lobes (ring closure) of the HOMO of conjugated (π-system) polyene.
  • According to Woodward-Hoffmann rule for thermal and photochemical Electrocyclic reactions,
π-systems Thermal Photochemical
6- π-electrons Disrotatory Conrotatory
8- π-electrons Conrotatory Disrotatory

To determine: the major product formed for each of the given electrocyclic reactions.

Blurred answer
Students have asked these similar questions
Can I please get help with answering this?
These are in the wrong boxes.  Why does the one on the left have a lower molar mass than the one on the right?
SYNTHESIS REACTIONS. For the following reactions, synthesize the given products from the given reactants. Multiple reactions/steps will be needed. For the one of the steps (ie reactions) in each synthesis, write out the mechanism for that reaction and draw an energy diagram showing the correct number of hills and valleys for that step's mechanism. CI b. a. Use acetylene (ethyne) and any alkyl halide as your starting materials Br C. d. "OH OH III. OH

Chapter 16 Solutions

EBK ORGANIC CHEMISTRY AS A SECOND LANGU

Ch. 16.5 - Prob. 9PTSCh. 16.5 - Prob. 10PTSCh. 16.5 - Prob. 11ATSCh. 16.5 - Prob. 12CCCh. 16.7 - Prob. 3LTSCh. 16.7 - Prob. 13PTSCh. 16.7 - Prob. 14ATSCh. 16.7 - Prob. 15CCCh. 16.7 - Prob. 16CCCh. 16.7 - Prob. 17CCCh. 16.7 - Predict the regiochemical outcome (major product)...Ch. 16.8 - Prob. 19CCCh. 16.9 - Prob. 20CCCh. 16.9 - Prob. 4LTSCh. 16.9 - Prob. 21PTSCh. 16.9 - Prob. 22ATSCh. 16.10 - Prob. 23CCCh. 16.10 - Prob. 24CCCh. 16.10 - Prob. 25CCCh. 16.10 - Prob. 26CCCh. 16.11 - Prob. 5LTSCh. 16.11 - Prob. 27PTSCh. 16.11 - Prob. 28ATSCh. 16.12 - Prob. 29CCCh. 16 - Prob. 30PPCh. 16 - Prob. 31PPCh. 16 - Prob. 32PPCh. 16 - Prob. 33PPCh. 16 - Prob. 34PPCh. 16 - Prob. 35PPCh. 16 - Prob. 36PPCh. 16 - Prob. 37PPCh. 16 - Prob. 38PPCh. 16 - Prob. 39PPCh. 16 - Prob. 40PPCh. 16 - Prob. 41PPCh. 16 - Prob. 42PPCh. 16 - Prob. 43PPCh. 16 - Prob. 44PPCh. 16 - Prob. 45PPCh. 16 - Prob. 46PPCh. 16 - Prob. 47PPCh. 16 - Prob. 48PPCh. 16 - Prob. 49PPCh. 16 - Prob. 50PPCh. 16 - Prob. 51PPCh. 16 - Prob. 52PPCh. 16 - Prob. 53PPCh. 16 - Prob. 54PPCh. 16 - Prob. 55PPCh. 16 - Prob. 56PPCh. 16 - Prob. 57PPCh. 16 - Prob. 58PPCh. 16 - Prob. 59PPCh. 16 - Prob. 60IPCh. 16 - Prob. 61IPCh. 16 - Prob. 62IPCh. 16 - Prob. 63IPCh. 16 - Prob. 64IPCh. 16 - Prob. 65IPCh. 16 - Prob. 66IPCh. 16 - Prob. 67IPCh. 16 - Prob. 68IPCh. 16 - Prob. 69IPCh. 16 - Prob. 70IPCh. 16 - Prob. 71IPCh. 16 - Prob. 72IPCh. 16 - Prob. 73IPCh. 16 - Prob. 74IPCh. 16 - Prob. 76IPCh. 16 - Prob. 77CPCh. 16 - Prob. 78CPCh. 16 - Prob. 79CPCh. 16 - Prob. 80CPCh. 16 - Prob. 81CP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY