PHYSICS:F/SCI.+ENGRS-W/WEBASSIGN
PHYSICS:F/SCI.+ENGRS-W/WEBASSIGN
10th Edition
ISBN: 9781337888479
Author: SERWAY
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 16, Problem 51AP

(a)

To determine

The power P(x) carried by this wave at a point.

(a)

Expert Solution
Check Mark

Answer to Problem 51AP

The power P(x) carried by this wave at a point is 12kμω3A02e2bx.

Explanation of Solution

The wave function for string is given as,

  y(x,t)=(A0ebx)sin(kxωt)

Formula to calculate the velocity of wave for small segment of string is,

  v=dydt

Here, dy is the distance travel by wave in small segment and dt is the small time interval.

Substitute (A0ebx)sin(kxωt) for y.

  v=d(A0ebx)sin(kxωt)dtv=ω(A0ebx)cos(kxωt)

Assume the mass presents in the small segment dx of string is,

  dm=μdx

Here, μ is the linear mass density and dx is the small length of the string.

Formula to calculate the kinetic energy for small segment is,

    dK=12dmv2        (1)

Here, dK is the kinetic energy for small segment and dm is the mass of small segment of string.

Substitute μdx for m and ω(A0ebx)cos(kxωt) for v in equation (1).

    dK=12μdx(ω(A0ebx)cos(kxωt))2=12μω2(A0ebx)2cos2(kxωt)dx        (2)

Integrate the equation (2) over all the string elements in the wavelength of the waves for total kinetic energy.

    dK=0λ12μω2(A0ebx)2cos2(kxωt)dxK=14μω2(A0ebx)2λ

Formula to calculate the potential energy for string in small segment is,

    dp=12dmωy2        (3)

Here, dp is the potential energy present in the small segment of string.

Substitute μdx for m and (A0ebx)sin(kxωt) for y in equation (3).

    dp=12μdxω((A0ebx)sin(kxωt))2=12μdxω(A0ebx)2sin2(kxωt)        (4)

Integrate the equation (4) over all the string elements in the wavelength of the waves for total potential energy.

    dp=0λ12μω(A0ebx)2sin2(kxωt)dxp=14μω2(A0ebx)2λ

Formula to calculate the power P(x) is,

    P(x)=K+p        (5)

Substitute 14μω2(A0ebx)2λ for p and 14μω2(A0ebx)2λ for K in equation (5).

    P(x)=14μω2(A0ebx)2λ+14μω2(A0ebx)2λ=12μω2(A0ebx)2λ

Formula to calculate the wave length is,

    λ=ωk

Here, k is the wave number and λ is the wave number.

Substitute ωk for λ in equation (5) to get P(x).

    P(x)=12μω2(A0ebx)2ωk=12kμω3A02e2bx

Conclusion:

Therefore, the power P(x) carried by this wave at a point is 12kμω3A02e2bx.

(b)

To determine

The power P(0) carried by this wave at the origin.

(b)

Expert Solution
Check Mark

Answer to Problem 51AP

The power P(0) carried by this wave at the origin is 12kμω3A02.

Explanation of Solution

The wave function for string is given as,

    y(x,t)=(A0ebx)sin(kxωt)

Formula to calculate the power for wave in the string is,

    P(x)=12kμω2(A0ebx)2λ        (6)

Substitute 0 for x in equation (6).

    P(0)=12kμω2(A0eb×0)2λP(0)=12kμω2A02λ        (7)

Formula to calculate the wave length is,

    λ=ωk

Substitute ωk for λ in equation (7) to get P(0).

    P(0)=12kμω2A02ωk=12kμω3A02

Conclusion:

Therefore, the power P(0) carried by this wave at the origin is 12kμω3A02.

(c)

To determine

The ratio of P(x)P(0).

(c)

Expert Solution
Check Mark

Answer to Problem 51AP

The ratio of P(x)P(0) is e2bx.

Explanation of Solution

The wave function for string is given as,

    y(x,t)=(A0ebx)sin(kxωt)

The ratio of power given as,

    P(x)P(0)

Substitute 12kμω2A02 for P(0) and 12kμω2(A0ebx)2 for P(x).

    P(x)P(0)=12kμω3(A0ebx)212kμω3A02=e2bx

Conclusion:

Therefore, the ratio of P(x)P(0) is e2bx.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. = 5.4e5 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + 6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step…
(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when = 4.95°. What is L (in m)? Assume the cords are massless. 0.150 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 13.6 ☑ Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nC
A proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 10³ N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 1.15e-7 ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 5.33e-3 ☑ Your response is off by a multiple of ten. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. | ↑ + jkm/s

Chapter 16 Solutions

PHYSICS:F/SCI.+ENGRS-W/WEBASSIGN

Ch. 16.9 - An airplane flying with a constant velocity moves...Ch. 16 - A seismographic station receives S and P waves...Ch. 16 - Two points A and B on the surface of the Earth are...Ch. 16 - You are working for a plumber who is laying very...Ch. 16 - You are working on a senior project and are...Ch. 16 - When a particular wire is vibrating with a...Ch. 16 - (a) Plot y versus t at x = 0 for a sinusoidal wave...Ch. 16 - Consider the sinusoidal wave of Example 16.2 with...Ch. 16 - A sinusoidal wave traveling in the negative x...Ch. 16 - (a) Write the expression for y as a function of x...Ch. 16 - Review. The elastic limit of a steel wire is 2.70 ...Ch. 16 - Transverse waves travel with a speed of 20.0 m/s...Ch. 16 - Why is the following situation impossible? An...Ch. 16 - Tension is maintained in a string as in Figure...Ch. 16 - Prob. 14PCh. 16 - Transverse waves are being generated on a rope...Ch. 16 - In a region far from the epicenter of an...Ch. 16 - A long string carries a wave; a 6.00-m segment of...Ch. 16 - A two-dimensional water wave spreads in circular...Ch. 16 - A horizontal string can transmit a maximum power...Ch. 16 - Prob. 20PCh. 16 - Show that the wave function y = eb(x vt) is a...Ch. 16 - Prob. 22PCh. 16 - A sinusoidal sound wave moves through a medium and...Ch. 16 - Earthquakes at fault lines in the Earths crust...Ch. 16 - An experimenter wishes to generate in air a sound...Ch. 16 - A sound wave propagates in air at 27C with...Ch. 16 - Prob. 27PCh. 16 - A rescue plane flies horizontally at a constant...Ch. 16 - The speed of sound in air (in meters per second)...Ch. 16 - A sound wave moves down a cylinder as in Figure...Ch. 16 - The intensity of a sound wave at a fixed distance...Ch. 16 - The intensity of a sound wave at a fixed distance...Ch. 16 - The power output of a certain public-address...Ch. 16 - A fireworks rocket explodes at a height of 100 m...Ch. 16 - You are working at an open-air amphitheater, where...Ch. 16 - Why is the following situation impossible? It is...Ch. 16 - Show that the difference between decibel levels 1...Ch. 16 - Submarine A travels horizontally at 11.0 m/s...Ch. 16 - Prob. 39PCh. 16 - Why is the following situation impossible? At the...Ch. 16 - Review. A block with a speaker bolted to it is...Ch. 16 - Review. A block with a speaker bolted to it is...Ch. 16 - A sinusoidal wave in a rope is described by the...Ch. 16 - The wave is a particular type of pulse that can...Ch. 16 - Some studies suggest that the upper frequency...Ch. 16 - An undersea earthquake or a landslide can produce...Ch. 16 - A sinusoidal wave in a string is described by the...Ch. 16 - A rope of total mass m and length L is suspended...Ch. 16 - A wire of density is tapered so that its...Ch. 16 - Prob. 50APCh. 16 - Prob. 51APCh. 16 - A train whistle (f = 400 Hz) sounds higher or...Ch. 16 - Review. A 150-g glider moves at v1 = 2.30 m/s on...Ch. 16 - Consider the following wave function in SI units:...Ch. 16 - Prob. 55APCh. 16 - Prob. 56APCh. 16 - A string on a musical instrument is held under...Ch. 16 - Assume an object of mass M is suspended from the...Ch. 16 - Equation 16.40 states that at distance r away from...Ch. 16 - In Section 16.7, we derived the speed of sound in...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning