An Introduction to Physical Science
14th Edition
ISBN: 9781305079120
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Brooks Cole
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 4MC
To determine
The scientist who discovered the true phases of Venus.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which of the following is true in our solar system?
1.
The planets travel in a circular path, with the sun being in the very center.
2.
The planets travel in an elliptical path, with the sun being in the very center.
3.
The planets travel in an elliptical path, with the sun at one of the focus points.
4.
The planets travel in a helical path, with the sun located along the central axis.
Suppose you're in a circular orbit around Saturn (M = 5.683 x 1026 kg) with a semi-major axis
of a = 237,948 km.
a. What is your orbital velocity?
b. Using the "Vis-viva" equation (which can be derived from the total energy)
v = GM
What is the delta-V you would need to get from your current orbit, into an elliptical orbit
that has an apoapsis near Titan (a = 1,221,870 km)?
Kepler's 1st law says that our Solar System's planets orbit in ellipses around the Sun where the closest distance to the Sun is called perihelion.
Suppose I tell you that there is a planet with a perihelion distance of 2 AU and a semi-major axis of 1.5 AU.
Does this make physical sense? Explain why or why not.
Chapter 16 Solutions
An Introduction to Physical Science
Ch. 16.1 - What is the difference between the geocentric...Ch. 16.1 - Prob. 2PQCh. 16.1 - Calculate the period of a planet whose orbit has a...Ch. 16.2 - Prob. 1PQCh. 16.2 - Prob. 2PQCh. 16.3 - Which has the greater albedo, the Earth or the...Ch. 16.3 - Prob. 2PQCh. 16.4 - What makes a planet terrestrial, or pertaining to...Ch. 16.4 - What is the most abundant molecule in the...Ch. 16.5 - Prob. 1PQ
Ch. 16.5 - Prob. 2PQCh. 16.6 - Prob. 1PQCh. 16.6 - Prob. 2PQCh. 16.7 - Prob. 1PQCh. 16.7 - Prob. 2PQCh. 16.8 - Prob. 1PQCh. 16.8 - Prob. 2PQCh. 16 - Prob. AMCh. 16 - Prob. BMCh. 16 - Prob. CMCh. 16 - Prob. DMCh. 16 - Prob. EMCh. 16 - Prob. FMCh. 16 - Prob. GMCh. 16 - Prob. HMCh. 16 - Prob. IMCh. 16 - Prob. JMCh. 16 - Prob. KMCh. 16 - Prob. LMCh. 16 - Prob. MMCh. 16 - Prob. NMCh. 16 - Prob. OMCh. 16 - Prob. PMCh. 16 - Prob. QMCh. 16 - Prob. RMCh. 16 - Prob. SMCh. 16 - Prob. TMCh. 16 - Prob. UMCh. 16 - Prob. VMCh. 16 - Prob. WMCh. 16 - Prob. XMCh. 16 - Prob. 1MCCh. 16 - Which of Keplers laws gives the most direct...Ch. 16 - Which of Keplers laws gives an indication of the...Ch. 16 - Prob. 4MCCh. 16 - Which of the following is abundant on the Earth...Ch. 16 - Prob. 6MCCh. 16 - Prob. 7MCCh. 16 - Which of the following statements concerning the...Ch. 16 - Which of the following is not a physical...Ch. 16 - What are the primary constituents of the Jovian...Ch. 16 - Which of the following is not a physical...Ch. 16 - Which planet has a ring system made of mostly...Ch. 16 - Which Jovian planet revolves on its side and has...Ch. 16 - Which one of the following criteria disqualifies...Ch. 16 - Which statement about the dwarf planet Ceres is...Ch. 16 - Prob. 16MCCh. 16 - Prob. 17MCCh. 16 - Which of the following is not a very useful method...Ch. 16 - ___ is the study of the universe. (Intro)Ch. 16 - Prob. 2FIBCh. 16 - Prob. 3FIBCh. 16 - Prob. 4FIBCh. 16 - Prob. 5FIBCh. 16 - Prob. 6FIBCh. 16 - Prob. 7FIBCh. 16 - The albedo of the Earth is about ___. (16.3)Ch. 16 - Prob. 9FIBCh. 16 - Prob. 10FIBCh. 16 - Prob. 11FIBCh. 16 - Prob. 12FIBCh. 16 - The Jovian planet with retrograde rotation is ___....Ch. 16 - Prob. 14FIBCh. 16 - Prob. 15FIBCh. 16 - Prob. 16FIBCh. 16 - Prob. 17FIBCh. 16 - Prob. 1SACh. 16 - What is the main difference between the...Ch. 16 - Prob. 3SACh. 16 - Prob. 4SACh. 16 - Describe the orientation and the shape of the...Ch. 16 - Prob. 6SACh. 16 - Prob. 7SACh. 16 - Prob. 8SACh. 16 - Prob. 9SACh. 16 - Prob. 10SACh. 16 - Prob. 11SACh. 16 - Prob. 12SACh. 16 - Explain the differences between the Grand Canyon...Ch. 16 - Prob. 14SACh. 16 - Prob. 15SACh. 16 - Which planets axis of rotation is a peculiarity,...Ch. 16 - Prob. 17SACh. 16 - Prob. 18SACh. 16 - Why is Pluto not considered a major planet, and...Ch. 16 - Prob. 20SACh. 16 - Prob. 21SACh. 16 - What was the major influence in the formation of...Ch. 16 - What is astrometry?Ch. 16 - Prob. 24SACh. 16 - Prob. 1VCCh. 16 - Give some reasons our knowledge of the solar...Ch. 16 - A Foucault pendulum suspended from the ceiling of...Ch. 16 - Prob. 3AYKCh. 16 - Explain how the scientific method was used to...Ch. 16 - How does the solar nebula theory explain the...Ch. 16 - Calculate the period T of a planet whose orbit has...Ch. 16 - Calculate the period T of a dwarf planet whose...Ch. 16 - Calculate the length R of the semimajor axis of a...Ch. 16 - Calculate the length R of the semimajor axis of a...Ch. 16 - Determine what the period of revolution of the...Ch. 16 - Determine what the period of revolution of the...Ch. 16 - Asteroids are believed to be material that never...Ch. 16 - Show that the asteroid belt lies between Mars and...Ch. 16 - Use Keplers third law to show that the closer a...Ch. 16 - Prob. 10ECh. 16 - Prob. 11ECh. 16 - List the Jovian planets in order of increasing...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How Do We Know? Why must a scientific argument dealing with some aspect of nature take all of the known evidence into account?arrow_forwardWhy do you think so many people still believe in astrology and spend money on it? What psychological needs does such a belief system satisfy?arrow_forwardTwo exoplanets, UCF1.01 and UCF1.02 are found revolving around the same star. The period of planet UCF1.01 is 4.8 days, and that of planet UCF1.02 is 5.2 days. If the average distance of planet A to the sun is 2,885.4 km, what is the average distance of planet B to the sun km? Please keep four digits after decimal points.arrow_forward
- What are (3) ways to change the # of Days it takes for a planet to revolve around a star?arrow_forwardExplain the tidal hypothesis.arrow_forwardThinking about the Scale of the Solar System As we discussed, the radius of the Earth is approximately 6370 km. The Sun, on the other hand, is approximately 700,000 km in radius and located, on average, one astronomical unit (1 au=1.5x108 km) from the Earth. Imagine that you stand near Mansueto Library, at the corner of 57th and Ellis. You hold a standard desk globe, which has a diameter of 12 inches, and you want to build a model of the Sun, Earth, and their separation that keeps all sizes and lengths in proportion to one another. a) How big would the Sun be in this scale model? Give your answer in feet and meters. b) The nearest star to the Solar System outside of the Sun is Proxima Centauri, which is approximately 4.2 light years away (a light year is the distance light travels in one year, or approximately 9.5x1012 km). Given the scale model outlined above, how far would a model Proxima Centauri be placed from you? Give your answer in miles and km.arrow_forward
- The fictional asteroid Lilliput orbits around the Sun one time every 3.605 Earth years. What is the average distance for Lilliput away from the Sun in astronomical units (AU)? One astronomical unit is equal to the average distance the Earth is away from the Sun, 1.496x1011m. The mass of the Sun is 1.989x1030kg.arrow_forwardplease quickly thanks !!!!arrow_forwardI have submitted this question 4 times and the responses have all been wrong. Please put your best person on this. I have tried 19.9923, 20.6, and 20.69 for part 1 and those are all wrong and I have tried 14.1122, 14.80, 8.41781, and 14.87 for part 2 and those are all wrong too. Please help! I'm wasting questions!arrow_forward
- Mathematically, prove the accuracy of Kepler’s 3rd law by computing and recording the values in the data table belowarrow_forwardPlease answer the question and subquestions completely! This is one whole question which has subquestions! According to the official Bartleby guidelines, each question can have up to two subquestions! Thank you! 1) Use Kepler's Law to find the time (in Earth’s years) for Mars to orbit the Sun if the radius of Mars’ orbit is 1.5 times the radius of Earth's orbit. 1.8 2.8 3.4 4.2 A) The mass of Mars is about 1/10 the mass of Earth. Its diameter is about 1/2 the diameter of Earth. What is the gravitational acceleration at the surface of Mars? 9.8 m/s2 2.0 m/s2 3.9 m/s2 4.9 m/s2 none of these B) A 9.0 x 10 3 kg satellite orbits the Earth at the distance of 2.56 x 10 7 m from Earth’s surface. What is its period? 1.1 x 10 4 s 4.1 x 10 4 s 5.7 x 10 4 s 1.5 x 10 5 sarrow_forwardAs an aspiring science fiction author, you are writing about a space-faring race and their home planet, Krypton, which has one moon. This moon takes 1,702,948 seconds to complete an orbit around Krypton. If the distance from the center of the moon to the surface of Krypton is 462.5 x 106 m and the planet has a radius of 37.2 x 106 m, calculate the moon's centripetal acceleration. Your Answer: Answerarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY