Concept explainers
(a)
The longest wavelength (in nanometer) that can dislodge an electron from a negative hydrogen ion. Given that the amount of energy (
(a)
Answer to Problem 33Q
Solution:
Explanation of Solution
Given data:
The amount of energy (
Formula used:
Write the expression for the energy of a photon:
Here,
Explanation:
As Planck’s constant,
Also consider the speed of light,
Refer to the expression for the energy of a photon.
Substitute
Conclusion:
Hence, the longest wavelength that will emit an electron from the negative hydrogen ion will be
(b)
The part of the
(b)
Answer to Problem 33Q
Solution:
This wavelength will lie in the infrared region of the electromagnetic spectrum.
Explanation of Solution
Introduction:
The electromagnetic spectrum is broadly classified into three classes, which are ultraviolet region, visible, and infrared regions. The wavelength increases while the energy decreases from the ultraviolet to infrared region. The visible region lies between 400 to 700 nm.
Explanation:
The wavelength calculated in part (a) came out to be
Conclusion:
Therefore, the wavelength that will emit an electron from the negative hydrogen ion will lie in the infrared region of the electromagnetic spectrum.
(c)
Whether a photon of visible light will be able to dislodge the same electron from a negative hydrogen ion. Given that the amount of energy (
(c)
Answer to Problem 33Q
Solution:
Yes, a photon of the visible light will be able to dislodge an extra electron.
Explanation of Solution
Introduction:
The visible light is called so because it can be seen through naked eyes. Wavelength other than from the visible region will only be seen through special filters. The visible part lies between the infrared and ultraviolet regions in the electromagnetic spectrum.
Explanation:
The energy level of the visible light is higher than that of the infrared radiations. As the minimum energy required to expel an electron lies in the infrared region, a photon of visible light will definitely be able to do so. The photon of visible light will be able to excite the electron much quicker than that of the infrared region.
Conclusion:
Therefore, a photon of the visible region will be able to excite an electron from the negative hydrogen ion much quickly than by the one lying in the infrared region.
(d)
The reason for the opacity of the photosphere that contains negative hydrogen ions for the visible light, but not for the infrared light. Given that the amount of energy (
(d)
Answer to Problem 33Q
Solution:
The photosphere is opaque (invisible) for the visible light because it is of high energy and gets easily absorbed in order to dislodge electrons. The infrared light carries low energy and does not pass easily through the photosphere; therefore, they are not opaque.
Explanation of Solution
Introduction:
The light that gets absorbed easily through a medium becomes opaque (invisible), but it remains capable enough to excite electrons in the material it passes through. The light that fails to excite electrons from a medium cannot pass through the same.
Explanation:
The energy carried by the infrared radiations is far less than that carried by the ultraviolet and/or the visible light. Higher energy is able to excite the electrons through the photosphere, which is primarily made up of negative hydrogen ions. As the visible light excites electrons, it gets easily absorbed in the photosphere, thus becomes invisible or opaque.
The infrared light of longer wavelength (or less energy) than the one calculated in part (a) will fail to excite the electrons from the photosphere. They will not pass through the photosphere, thus will become visible or opaque to naked eyes.
Conclusion:
Therefore, the infrared light is opaque to the photosphere while visible light is not because the former is of less energy and does not pass through the photosphere while the latter passes through and excites the electrons so as to become invisible.
Want to see more full solutions like this?
Chapter 16 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
- Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forwardUse the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.arrow_forward
- No chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forwardAn aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forward
- ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forward
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill