The comparison of acidic strength of the given acids has to be done by using their given pK a values. Concept introduction: In aqueous solution an acid undergoes ionization. The ionization of an acid is can be expressed in terms of equilibrium constant. The quantitative measurement tells about the strength of the acid. Higher the value of K a stronger will be the acid. The acid dissocition can be represented as following equilibrium, HA ( aq ) + H 2 O ( l ) ⇌ H 3 O + ( aq ) + A − 1 ( aq ) The dissociation constant for the acid is K a , K a = [ H 3 O + ] [ A − ] [ HA ] For simplifications, pK a value is used to find the acidic strength of acid which is calculated by taking negative logarithm of K a . pK a = − log ( K a ) The lower value of pK a of an acid, stronger will be the acid. Thus on comparing the pK a value it can be determined which acid is stronger one among them.
The comparison of acidic strength of the given acids has to be done by using their given pK a values. Concept introduction: In aqueous solution an acid undergoes ionization. The ionization of an acid is can be expressed in terms of equilibrium constant. The quantitative measurement tells about the strength of the acid. Higher the value of K a stronger will be the acid. The acid dissocition can be represented as following equilibrium, HA ( aq ) + H 2 O ( l ) ⇌ H 3 O + ( aq ) + A − 1 ( aq ) The dissociation constant for the acid is K a , K a = [ H 3 O + ] [ A − ] [ HA ] For simplifications, pK a value is used to find the acidic strength of acid which is calculated by taking negative logarithm of K a . pK a = − log ( K a ) The lower value of pK a of an acid, stronger will be the acid. Thus on comparing the pK a value it can be determined which acid is stronger one among them.
Solution Summary: The author explains that the ionization of an acid is expressed in terms of equilibrium constant. The acid dissociation constant is pK_a.
Interpretation: The comparison of acidic strength of the given acids has to be done by using their given pKa values.
Concept introduction: In aqueous solution an acid undergoes ionization. The ionization of an acid is can be expressed in terms of equilibrium constant. The quantitative measurement tells about the strength of the acid. Higher the value of Ka stronger will be the acid. The acid dissocition can be represented as following equilibrium,
HA(aq)+ H2O(l)⇌ H3O+(aq)+ A−1(aq)
The dissociation constant for the acid is Ka,
Ka=[H3O+][A−][HA]
For simplifications, pKa value is used to find the acidic strength of acid which is calculated by taking negative logarithm of Ka.
pKa=−log(Ka)
The lower value of pKa of an acid, stronger will be the acid. Thus on comparing the pKa value it can be determined which acid is stronger one among them.
For a titration of 40.00 mL of 0.0500 M oxalic acid H2C2O4 with 0.1000 M KOH, calculate the pH at each of the following volume of KOH used in the titration: 1) before the titration begin;2) 15 mL; 3) 20 mL; 4) 25 mL; 5) 40 mL; 6) 50 mL. Ka1 = 5.90×10^-2, Ka2 = 6.50×10^-5 for oxalic acid.
Predict the major organic product(s), if any, of the following reactions. Assume all reagents are in excess unless otherwise indicated.
Chapter 16 Solutions
Owlv2 With Ebook, 1 Term (6 Months) Printed Access Card For Kotz/treichel/townsend/treichel's Chemistry & Chemical Reactivity, 10th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.