University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 2CQ
A sinusoidal transverse wave has a wavelength of 2.80 m. It takes 0.10 s for a portion of the string at a position x to move from a maximum position of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sinusoidal transverse wave has a wavelength of 2.80 m. It takes 0.10 s for a portion of the string at a position x to move from a maximum position of y=0.03my=0.03m to the equilibrium position y=0.y=0. What are the period, frequency, and wave speed of the wave?
A transverse sinusoidal wave on a string has a period T=25.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t=0, an element of the string at x=0 has a transverse position of 2.00 cm and is travelling downward with a speed of 2.00 m/s.
What is the amplitude of the wave?
What is the initial phase constant?
What is the maximum transverse speed of an element of the string?
Shown below is the plot of a wave function that models a wave at time t = 0.00 s and t = 2.00 s . The dotted line is the wave function at time t = 0.00 s and the solid line is the function at time t = 2.00 s . Estimate the amplitude, wavelength, velocity, and period of the wave.
Chapter 16 Solutions
University Physics Volume 1
Ch. 16 - Check Your Understanding When a guitar string is...Ch. 16 - Check Your Understanding The propagation velocity...Ch. 16 - Check Your Understanding The wave function above...Ch. 16 - Check Your Understanding The wave equation...Ch. 16 - Check Your Understanding The wave speed of a wave...Ch. 16 - Check Your Understanding Is the time-averaged...Ch. 16 - Check Your Understanding The equations for the...Ch. 16 - Give one example of a transverse wave and one...Ch. 16 - A sinusoidal transverse wave has a wavelength of...Ch. 16 - What is the difference between propagation speed...
Ch. 16 - Consider a stretched spring, such as a slinky. The...Ch. 16 - Consider a wave produced on a stretched spring by...Ch. 16 - A sinusoidal, transverse wave is produced on a...Ch. 16 - An electromagnetic wave, such as light, does not...Ch. 16 - If you were to shake the end of a taut spring up...Ch. 16 - If you shake the end of a stretched spring up and...Ch. 16 - Does the vertical speed of a segment of a...Ch. 16 - In this section, we have considered waves that...Ch. 16 - If you drop a pebble in a pond you may notice that...Ch. 16 - If the tension in a string were increased by a...Ch. 16 - Does a sound wave move faster in seawater or fresh...Ch. 16 - Guitars have strings of different linear mass...Ch. 16 - Shown below are three waves that were sent down a...Ch. 16 - Electrical power lines connected by two utility...Ch. 16 - Two strings, one with a low mass density and one...Ch. 16 - Consider a string with under tension with a...Ch. 16 - Circular water waves decrease in amplitude as they...Ch. 16 - In a transverse wave on a string, the motion of...Ch. 16 - The energy from the sun warms the portion of the...Ch. 16 - The intensity of a spherical waves decreases as...Ch. 16 - An incident sinusoidal wave is sent along a string...Ch. 16 - A string of a length of 2.00 m with a linear mass...Ch. 16 - A long, tight spring is held by two students, one...Ch. 16 - Many of the topics discussed in this chapter are...Ch. 16 - A string of a constant linear mass density is held...Ch. 16 - A truck manufacturer finds that a strut in the...Ch. 16 - Why do roofs of gymnasiums and churches seem to...Ch. 16 - Wine glasses can be set into resonance by...Ch. 16 - Air conditioning units are sometimes placed on the...Ch. 16 - Consider a standing wave modeled as...Ch. 16 - Storms in the South Pacific can create waves that...Ch. 16 - Waves on a swimming pool propagate at 0.75 m/s....Ch. 16 - Wind gusts create ripples on the ocean that have a...Ch. 16 - How many times a minute does a boat bob up and...Ch. 16 - Scouts at a camp shake the rope bridge they have...Ch. 16 - What is the wavelength of the waves you create in...Ch. 16 - What is the wavelength of an earthquake that...Ch. 16 - Radio waves transmitted through empty space at the...Ch. 16 - Your ear is capable of differentiating sounds that...Ch. 16 - (a) Seismographs measure the arrival times of...Ch. 16 - A Girl Scout is taking a 10.00-km hike to earn a...Ch. 16 - A quality assurance engineer at a frying pan...Ch. 16 - A pulse can be described as a single wave...Ch. 16 - A transverse wave on a string is modeled with the...Ch. 16 - Consider the wave function...Ch. 16 - A pulse is defined as y(x,t)=e2.77( 2.00( x2.00m/s...Ch. 16 - A wave is modeled at time t=0.00s with a wave...Ch. 16 - A wave is modeled with the function...Ch. 16 - A surface ocean wave has an amplitude of 0.60 m...Ch. 16 - A wave is modeled by the wave function...Ch. 16 - A transverse wave on a string is described with...Ch. 16 - A swimmer in the ocean observes one day that the...Ch. 16 - Consider a wave described by the wave function...Ch. 16 - Consider two waves defined by the wave functions...Ch. 16 - Consider two waves defined by the wave functions...Ch. 16 - The speed of a transverse wave on a string is...Ch. 16 - Transverse waves are sent along a 5.00-m-long...Ch. 16 - A copper wire has a density of =8920 kg/m3, a...Ch. 16 - A piano wire has a linear mass density of =4.95103...Ch. 16 - A string with a linear mass density of =0.0060...Ch. 16 - A cord has a linear mass density of =0.0075 kg/m...Ch. 16 - A string is 3.00 m long with a mass of 5.00 g. The...Ch. 16 - Two strings are attached to poles, however the...Ch. 16 - Two strings are attached to poles, however the...Ch. 16 - Transverse waves travel through a string where the...Ch. 16 - Two strings are attached between two poles...Ch. 16 - Two strings are attached between two poles...Ch. 16 - The note E4 is played on a piano and has a...Ch. 16 - Two transverse waves travel through a taut string....Ch. 16 - A sinusoidal wave travels down a taut, horizontal...Ch. 16 - The speed of a transverse wave on a string is...Ch. 16 - A string of length 5 m and a mass of 90 g is held...Ch. 16 - Ultrasound of intensity 1.50102W/m2 is produced by...Ch. 16 - The low-frequency speaker of a stereo set has...Ch. 16 - To increase the intensity of a wave by a factor of...Ch. 16 - A device called an insolation meter is used to...Ch. 16 - Energy from the Sun arrives at the top of Earth’s...Ch. 16 - Suppose you have a device that extracts energy...Ch. 16 - A photovoltaic array of (solar cells) is 10.0%...Ch. 16 - A microphone receiving a pure sound tone feeds an...Ch. 16 - A string with a mass of 0.30 kg has a length of...Ch. 16 - The power versus time for a point on a string...Ch. 16 - A string is under tension FT1. Energy is...Ch. 16 - A 250-Hz tuning fork is struck and the intensity...Ch. 16 - A sound speaker is rated at a voltage of P=120.00...Ch. 16 - The energy of a ripple on a pond is proportional...Ch. 16 - Consider two sinusoidal waves traveling along a...Ch. 16 - Consider two sinusoidal sine waves traveling along...Ch. 16 - Consider two sinusoidal sine waves traveling along...Ch. 16 - Two sinusoidal waves are moving through a medium...Ch. 16 - Two sinusoidal waves are moving through a medium...Ch. 16 - Two sinusoidal waves are moving through a medium...Ch. 16 - Consider two waves y1(x,t) and y2(x,t) that are...Ch. 16 - Two sinusoidal waves, which are identical except...Ch. 16 - Two sinusoidal waves, which are identical except...Ch. 16 - Consider two wave functions,...Ch. 16 - Consider two wave functions,...Ch. 16 - Consider two wave functions that differ only by a...Ch. 16 - A wave traveling on a Slinky® that is stretched to...Ch. 16 - A 2-m long string is stretched between two...Ch. 16 - Consider the experimental setup shown below. The...Ch. 16 - A cable with a linear density of =0.2 kg/m is hung...Ch. 16 - Consider a rod of length L, mounted in the center...Ch. 16 - Consider two wave functions...Ch. 16 - A 2.40-m wire has a mass of 7.50 g and is under a...Ch. 16 - A string with a linear mass density of 0.0062 kg/m...Ch. 16 - A string with a linear mass density of 0.0075 kg/m...Ch. 16 - Two sinusoidal waves with identical wavelengths...Ch. 16 - A string, fixed on both ends, is 5.00 m long and...Ch. 16 - A string is fixed at both end. The mass of the...Ch. 16 - The frequencies of two successive modes of...Ch. 16 - A string is fixed at both ends to supports 3.50 m...Ch. 16 - Sine waves are sent down a 1.5-m-long string fixed...Ch. 16 - Ultrasound equipment used in the medical...Ch. 16 - Shown below is the plot of a wave function that...Ch. 16 - The speed of light in air is approximately...Ch. 16 - A radio station broadcasts radio waves at a...Ch. 16 - A sunbather stands waist deep in the ocean and...Ch. 16 - A tuning fork vibrates producing sound at a...Ch. 16 - A motorboat is traveling across a lake at a speed...Ch. 16 - Use the linear wave equation to show that the wave...Ch. 16 - Given the wave functions y1(x,t)=Asin(kxt) and...Ch. 16 - A transverse wave on a string is modeled with the...Ch. 16 - A sinusoidal wave travels down a taut, horizontal...Ch. 16 - A transverse wave on a string (=0.0030kg/m) is...Ch. 16 - A transverse wave on a horizontal string...Ch. 16 - A student holds an inexpensive sonic range finder...Ch. 16 - A wave on a string is driven by a string vibrator,...Ch. 16 - A traveling wave on a string is modeled by the...Ch. 16 - A transverse wave on a string has a wavelength of...Ch. 16 - (a) What is the intensity of a laser beam used to...Ch. 16 - Consider two periodic wave functions,...Ch. 16 - Consider two periodic wave functions,...Ch. 16 - A trough with dimensions 10.00 meters by 0.10...Ch. 16 - A seismograph records the S- and P-waves from an...Ch. 16 - Consider what is shown below. A 20.00-kg mass...Ch. 16 - Consider the superposition of three wave functions...Ch. 16 - A string has a mass of 150 g and a length of 3.4...Ch. 16 - A standing wave is produced on a string under a...Ch. 16 - A string with a length of 4 m is held under a...Ch. 16 - A copper wire has a radius of 200 µ m and a length...Ch. 16 - A pulse moving along the x axis can be modeled as...Ch. 16 - A string with a linear mass density of =0.0085...Ch. 16 - Consider two wave functions y1(x,t)=Asin(kxt) and...Ch. 16 - The wave function that models a standing wave is...Ch. 16 - Consider two wave functions y1(x,t)=Asin(kxt) and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A simple metal detector has a coil with an alternating current in it. The current produces an alternating magne...
College Physics
A plank, fixed to a sled at rest in frame S, is of length L0 and makes an angle of 0 with the xaxis. Later, the...
Modern Physics
Experiments are performed with ultra-cold neutrons having velocities as small as 1.00 m/s. (a) What is the wave...
College Physics
E. coli bacteria swim by means of flagella that rotate about 100 times per second. A typical E. coli bacterium ...
Essential University Physics: Volume 1 (3rd Edition)
A man consumes 3000 kcal of food in one day, converting most of it to thermal energy to maintain body temperatu...
University Physics Volume 2
The height of a certain hill (in feet) is given by , where y is the distance (in miles) north, x the distance e...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A standing wave on a string is described by the equation y(x, t) = 1.25 sin(0.0350x) cos(1450t), where x is in centimeters, t is in seconds, and the resulting amplitude is in millimeters. a. What is the length of the string if this standing wave represents the first harmonic vibration of the string? b. What is the speed of the wave on this string?arrow_forwardThe equation of a harmonic wave propagating along a stretched string is represented by y(x, t) = 4.0 sin (1.5x 45t), where x and y are in meters and the time t is in seconds. a. In what direction is the wave propagating? be. N What are the b. amplitude, c. wavelength, d. frequency, and e. propagation speed of the wave?arrow_forwardA transverse wave on a string is described by the wave function y=0.120sin(8x+4t) where x and y are in meters and t is in seconds. Determine (a) the transverse speed and (b) the transverse acceleration at t = 0.200 s for an element of the string located at x = 1.60 m. What are (c) the wavelength, (d) the period, and (e) the speed of propagation of this wave?arrow_forward
- A transverse sinusoidal wave on a string has a period T = 25.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, an element of the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 2.00 m/s. (a) What is the amplitude of the wave? (b) What is the initial phase angle? (c) What is the maximum transverse speed of an element of the string? (d) Write the wave function for the wave.arrow_forwardA taut rope has a mass of 0.180 kg and a length of 3.60 m. What power must be supplied to the rope so as to generate sinusoidal waves having an amplitude of 0.100 m and a wavelength of 0.500 m and traveling with a speed of 30.0 m/s?arrow_forwardA transverse wave on a string has a wavelength of 5.0 m, a period of 0.02 s, and an amplitude of 1.5 cm. The average power transferred by the wave is 5.00 W. What is the tension in the string?arrow_forward
- By what factor would you have to multiply the tension in a stretched string so as to double the wave speed? Assume the string does not stretch. (a) a factor of 8 (b) a factor of 4 (c) a factor of 2 (d) a factor of 0.5 (e) You could not change the speed by a predictable factor by changing the tension.arrow_forwardThe wave function for a pulse on a rope is given by y(x,t)=0.43(x13.6t)2+1 where all constants are in the appropriate SI units. Sketch the wave profile for a. the incident pulse, b. the reflected pulse if the end is free, and c. the reflected pulse if the end is fixed.arrow_forwardA source vibrating at constant frequency generates a sinusoidal wave on a string under constant tension. If the power delivered to the string is doubled, by what factor does the amplitude change? (a) a factor of 4 (b) a factor of 2 (c) a factor of 2 (d) a factor of 0.707 (e) cannot be predictedarrow_forward
- Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 3.00 cm, a wavelength of 5.20 m, and a period of 6.52 s, but one has a phase shift of an angle . What is the phase shift if the resultant wave has an amplitude of 5.00 cm? [Hint: Use the trig identity sinu+sinv=2sin(u+v2)cos(uv2)arrow_forwardA sinusoidal wave travels down a taut, horizontal string with a linear mass density of =0.060 kg/m. The magnitude of maximum vertical acceleration of the wave is aymax=0.90 cm/s2 and the amplitude of the wave is 0.40 m. The string is under a tension of FT=600.00 N. The wave moves in the negative x-direction. Write an equation to model the wave.arrow_forwardThe string shown in Figure P13.5 is driven at a frequency of 5.00 Hz. The amplitude of the motion is A = 12.0 cm, and the wave speed is v = 20.0 m/s. Furthermore, the wave is such that y = 0 at x = 0 and t = 0. Determine (a) the angular frequency and (b) the wave number for this wave. (c) Write an expression for the wave function. Calculate (d) the maximum transverse speed and (e) the maximum transverse acceleration of an element of the string. Figure P13.5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Wave Speed on a String - Tension Force, Intensity, Power, Amplitude, Frequency - Inverse Square Law; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=vEzftaDL7fM;License: Standard YouTube License, CC-BY
Vibrations of Stretched String; Author: PhysicsPlus;https://www.youtube.com/watch?v=BgINQpfqJ04;License: Standard Youtube License