Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 27P
To determine
The speed of the sound that the person report to his grandfather.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There was an accident, and NASA engineers are trying to sort out where two of their Mars Rovers, Tango and Foxtrot, have landed. The engineers know that landing site A is much hotter than landing site B. Unfortunately, the only working sensors on Tango and Foxtrot measure the speed of sound. If Tango measures the speed of sound at its landing site as 240 m/s, while Foxtrot measures speed of sound as 258 m/s at its landing site, where has each rover landed?
There was an accident and NASA engineers are
trying to sort out where two of their Mars Rovers
(named 'Tango' and 'Foxtrot') have landed. The
engineers know that landing site A is much hotter
than landing site B. Unfortunately, the only
working sensors on Tango and Foxtrot measure
the speed of sound. If Tango measures the speed
of sound at its landing site as 240 m/s, while
Foxtrot measures speed of sound as 258 m/s at
its landing site, where has each rover landed?
Tango landed at site A while Foxtrot landed
at site B.
Tango landed at site B while Foxtrot landed
at site A.
Both Tango and Foxtrot landed at site A.
O Both Tango and Foxtrot landed at site B.
Two cars traveling with the same speed move
directly away from one another. One car sounds a
horn whose frequency is 424 Hz and a person in
the other car hears a frequency of 389 Hz.
Part A
What is the speed of the cars?
ΑΣφ
26.6
m/s
V =
Submit
Previous Answers Request Answer
Chapter 16 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 16.1 - Prob. 16.1QQCh. 16.2 - A sinusoidal wave of frequency f is traveling...Ch. 16.2 - The amplitude of a wave is doubled, with no other...Ch. 16.3 - Suppose you create a pulse by moving the free end...Ch. 16.4 - Which of the following, taken by itself, would be...Ch. 16.6 - If you blow across the top of an empty soft-drink...Ch. 16.8 - A vibrating guitar string makes very little sound...Ch. 16.8 - Increasing the intensity of a sound by a factor of...Ch. 16.9 - Consider detectors of water waves at three...Ch. 16.9 - You stand on a platform at a train station and...
Ch. 16.9 - An airplane flying with a constant velocity moves...Ch. 16 - A seismographic station receives S and P waves...Ch. 16 - Two points A and B on the surface of the Earth are...Ch. 16 - You are working for a plumber who is laying very...Ch. 16 - Prob. 4PCh. 16 - When a particular wire is vibrating with a...Ch. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - A sinusoidal wave traveling in the negative x...Ch. 16 - Prob. 9PCh. 16 - Prob. 10PCh. 16 - Prob. 11PCh. 16 - Prob. 12PCh. 16 - Tension is maintained in a string as in Figure...Ch. 16 - Prob. 14PCh. 16 - Transverse waves are being generated on a rope...Ch. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - A two-dimensional water wave spreads in circular...Ch. 16 - A horizontal string can transmit a maximum power...Ch. 16 - Prob. 20PCh. 16 - Show that the wave function y = eb(x vt) is a...Ch. 16 - Prob. 22PCh. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 - Prob. 26PCh. 16 - Prob. 27PCh. 16 - Prob. 28PCh. 16 - Prob. 29PCh. 16 - Prob. 30PCh. 16 - The intensity of a sound wave at a fixed distance...Ch. 16 - Prob. 32PCh. 16 - The power output of a certain public-address...Ch. 16 - A fireworks rocket explodes at a height of 100 m...Ch. 16 - You are working at an open-air amphitheater, where...Ch. 16 - Prob. 36PCh. 16 - Prob. 37PCh. 16 - Submarine A travels horizontally at 11.0 m/s...Ch. 16 - Prob. 39PCh. 16 - Prob. 40PCh. 16 - Review. A block with a speaker bolted to it is...Ch. 16 - Prob. 42PCh. 16 - Prob. 43APCh. 16 - Prob. 44APCh. 16 - Prob. 45APCh. 16 - Prob. 46APCh. 16 - A sinusoidal wave in a string is described by the...Ch. 16 - Prob. 48APCh. 16 - A wire of density is tapered so that its...Ch. 16 - Prob. 50APCh. 16 - Prob. 51APCh. 16 - A train whistle (f = 400 Hz) sounds higher or...Ch. 16 - Review. A 150-g glider moves at v1 = 2.30 m/s on...Ch. 16 - Prob. 54APCh. 16 - Prob. 55APCh. 16 - Prob. 56APCh. 16 - Prob. 57CPCh. 16 - Assume an object of mass M is suspended from the...Ch. 16 - Prob. 59CPCh. 16 - Prob. 60CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- During a thunderstorm, a frightened child is soothed by learning to estimate the distance to a lightning strike by counting the time between seeing the lightning and hearing the thunder (Fig. P2.25). The speed vs of sound in air depends on the air temperature, but assume the value is 343 m/s. The speed of light c is 3.00 108 m/s. a. A child sees the lightning and then counts to eight slowly before hearing the thunder. Assume the light travel time is negligible. Estimate the distance to the lightning strike. b. Using your estimate in part (a), find the light travel time. Is it fair to neglect the light travel time? c. Think about how time was measured in this problem. Is it fair to neglect the difference between the speed of sound in cold air (vs at 0C = 331.4 m/s) and the speed of sound in very warm air (vs at 40C = 355.4 m/s)?arrow_forwardYou are standing on a train station platform as a train goes by close to you. As the train approaches, you hear the whistle sound at a frequency of f1 = 93 Hz. As the train recedes, you hear the whistle sound at a frequency of f2 = 79 Hz. Take the speed of sound in air to be v = 340 m/s. Find an equation for the speed of the sound source vs, in this case it is the speed of the train. Express your answer in terms of f1, f2, and v. Find the numeric value, in meters per second, for the speed of the train. Find an equation for the frequency of the train whistle fs ("s" is for "source") that you would hear if the train were not moving. Express your answer in terms of f1, f2, and v. Find the numeric value, in hertz, for the frequency of the train whistle fs that you would hear if the train were not moving.arrow_forwardYou are standing on a train station platform as a train goes by close to you. As the train approaches, you hear the whistle sound at a frequency of f1 = 94 Hz. As the train recedes, you hear the whistle sound at a frequency of f2 = 77 Hz. Take the speed of sound in air to be v = 340 m/s. Find an equation for the speed of the sound source vs, in this case it is the speed of the train. Express your answer in terms of f1, f2, and v. Find the numeric value, in meters per second, for the speed of the train. Find an equation for the frequency of the train whistle fs ("s" is for "source") that you would hear if the train were not moving. Express your answer in terms of f1, f2, and v.arrow_forward
- On December 26, 2004, a great earthquake occurred off the coast of Sumatra and triggered immense waves (tsunami) that killed some 200000 people. Satellites observing these waves from space measured 800 km from one wave crest to the next and a period between waves of 1.0 hour. The speed of the waves were 800 km/h. How does the speed of the wave help you understand why the waves caused such devastation?arrow_forwardA jogger hears a car alarm and decides to investigate. While running toward the car, she hears an alarm frequency of 872.10 Hz. After passing the car, she hears the alarm at a frequency of 850.10 Hz. If the speed of sound is 343 m/s. ¹) Calculate the speed of the jogger. (Express your answer to three significant figures.) Submit m Sarrow_forwardTI A mother hawk screeches as she dives at you. You recall from biology that female hawks screech at 819 Hz, but you hear the screech at 880 Hz. How fast is the hawk approaching? Express your answer with the appropriate units. ▸ View Available Hint(s) V= μA Value Submit h C Units ? Reviewarrow_forward
- An osprey (a type of hawk) has a distinct call: a whistle at 2100 Hz. An osprey calls while diving at you — you’ve gotten too close to her nest and she wants to drive you away! The frequency you perceive is 2400 Hz. How fast is the osprey approaching? (The speed of sound in air varies with temperature, but in this problem you can take it to be 343 m/s, the speed at 20◦C.)arrow_forwardThere is a tube of length 1.0 m with one end closed. You clapped your hand at the mouth of the tube once. The echo of the clap came back after 6.0 milliseconds. What is the velocity of sound in the tube ? 330 m/s O 320 m/s 290 m/s O 170 m/sarrow_forwardQuestion 2 If the speed of sound in air at 0 °C is 331 m/s. What will be the speed of sound in air at 50 °C? 299 m/s 142 m/s 331 m/s 360 m/s None of these. A Moving to another question will ave this response. ch 45arrow_forward
- An enormous thunderstorm covers Dallas-Ft. Worth. Your best friend Clark is a storm chaser and heads to the center of the storm to take some readings while you stay dry at home. While Clark is at the center of the storm, he sees and hears lightning strike a tree that is 150 m from where he is standing. You are 132 km from the tree. How long does it take for the sound to reach Clark? Assume the speed of sound is 343 m/s. How long does it take for the light to reach you? Sarrow_forwardA LaGuardia Physics Professor drops a stone into a well. How deep is the well if the Professor hears the sound from the stone hitting the bottom of the well 3.05 s later? Neglect the air resistance and take the free fall acceleration g = 9.81 m/s². The air temperature is T = 15.5°C. The depth of the well, h = 1037 How long did it take for the sound to travel back? The time, t = 3 x Units s Submit Question x Units m Question Help: Message instructor ✓✓.arrow_forwardPage 22 of 24 Question 22 ( If the Mach number is 2.2 and the speed of an airplane measured by radar is 2115 km/h, what is the local speed of sound and the temperature of air? ➤11 *** Paragraph + v V I U A B EE V OF 90 30arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY