(a)
To Discuss:
Supposing the yield to maturity on both bonds increases to 9%.:
- The actual percentage loss on each bond.
- The percentage loss predicted by the duration-with-convexity rule.
Introduction:
When specified payments are made by the issuer to the holder for a given period of time due to an obligation created by a security, then that security is known as Bond.The amount the holder will receive on maturity along with the coupon rate which is also known as the interest rate of the bond is known as the face value of the bond. The discount rate due to which the present payments from the bond become equal to its price i.e. it is the average
A bond's annual income when divided by the current price of the security is known as the current yield.
Convexity is a measure of the curve in the relationship between a bond's yield and a
Answer to Problem 23PS
In case the yield to maturity increases to 9%:
- The actual percentage loss on zero coupon bond is 11.09% and on coupon bond is 10.72%.
- The percentage loss predicted by the duration-with-convexity rule on zero coupon bond is 11.06% and on coupon bond is 10.63%.
Explanation of Solution
The price of the zero-coupon bond ($1,000 face value) selling at a yield to maturity of 8% is $374.84 which is calculated as below:
Price of Bond =
=
= 374.84
The price of the coupon bond ($1,000 face value) with 6% coupon rate selling at a yield to maturity of 8% is $774.84 which is calculated as below:
Price of Bond =
=
= 774.84
If Yield to Maturity increases to 9%:
- The actual price of the zero-coupon bond is $333.28 and calculated as below:
Price of Bond =
=
= 333.28
The actual price of the coupon bond is $691.79 and calculated as below:
Price of Bond =
=
= 691.79
Zero coupon bond:
Actual % loss=
= -11.09
=11.09% loss
Coupon bond:
Actual % loss=
=-10.72
=10.72% loss
- The percentage loss predicted by the duration-with-convexity rule of zero-coupon bond is:
Predicted % loss =
=
= -0.1106
= 11.06% loss
The percentage loss predicted by the duration-with-convexity rule of coupon bond is:
Predicted % loss =
=
= -0.1063
= 10.63%loss
(b)
To Discuss:
To repeat part (a), assuming the yield to maturity decreases to 7%
Introduction:
When specified payments are made by the issuer to the holder for a given period of time due to an obligation created by a security, then that security is known as Bond. The amount the holder will receive on maturity along with the coupon rate which is also known as the interest rate of the bond is known as the face value of the bond. The discount rate due to which the present payments from the bond become equal to its price i.e. it is the average rate of return which a holder can expect from a bond, is known as Yield to Maturity.
A bond's annual income when divided by the current price of the security is known as the current yield.
Convexity is a measure of the curve in the relationship between a bond's yield and a bond's price.
Answer to Problem 23PS
In case the yield to maturity decreases to 7%:
- The actual percentage gain on zero coupon bond is 12.59% and on coupon bond is 13.04%.
- The percentage gain predicted by the duration-with-convexity rule on zero coupon bond is 12.56% and on coupon bond is 12.95%.
Explanation of Solution
The price of the zero-coupon bond ($1,000 face value) selling at a yield to maturity of 8% is $374.84 which is calculated as below:
Price of Bond =
=
= 374.84
The price of the coupon bond ($1,000 face value) with 6% coupon rate selling at a yield to maturity of 8% is $774.84 which is calculated as below:
Price of Bond =
=
= 774.84
If Yield to Maturity falls to 7%:
- The price of the zero increases to $422.04 which is calculated as below:
Price of Bond =
=
= 422.04
The price of the coupon bond increases to $875.91 which is calculated as below:
Price of Bond =
=
= 875.91
Zero coupon bond:
Actual % gain=
= 0.1259
= 12.59% Gain
Coupon bond
Actual % gain=
= 0.1304
= 13.04% Gain
The percentage gain predicted by the duration-with-convexity rule of zero-coupon bond is:
Predicted % gain=
=
= 0.1256
= 12.56%gain
The percentage gain predicted by the duration-with-convexity rule of coupon bond is:
Predicted % gain =
=
=0.1295
=12.95%gain
(c)
To Discuss:
Compare the performance of two bonds in the two scenarios, one involving an increase in rates, the other a decrease. Based on their comparative investment performance, explain the attraction of convexity.
Introduction:
When specified payments are made by the issuer to the holder for a given period of time due to an obligation created by a security, then that security is known as Bond. The amount the holder will receive on maturity along with the coupon rate which is also known as the interest rate of the bond is known as the face value of the bond. The discount rate due to which the present payments from the bond become equal to its price i.e. it is the average rate of return which a holder can expect from a bond, is known as Yield to Maturity.
A bond's annual income when divided by the current price of the security is known as the current yield.
Convexity is a measure of the curve in the relationship between a bond's yield and a bond's price.
Answer to Problem 23PS
The 6% coupon bond, which has higher convexity, outperforms the zero regardless of whether rates rise or fall. The convexity effect, which is always positive, always favours the higher convexity bond.
Explanation of Solution
The 6% coupon bond has a higher convexity and it outperforms the zero regardless of whether fall or rise in rates. Using the duration-with-convexity formula this can be said to be a general property: the effects of duration on the two bonds due to any rates change are equal but the positive convexity effect, which is always as it is, is always seen to favour the higher convexity bond. Thus, if there are equal amounts of change in the yields on the bonds; the lower convexity bond is outperformed by the higher convexity bond, with the same initial yield to maturity and duration.
(d)
To Discuss:
In view of your answer to (c), determine whether it is possible for two bonds with equal duration, but different convexity, to be priced initially at the same yield to maturity if the yields on both bonds always increased or decreased by equal amounts, as in this example.
Introduction:
When specified payments are made by the issuer to the holder for a given period of time due to an obligation created by a security, then that security is known as Bond. The amount the holder will receive on maturity along with the coupon rate which is also known as the interest rate of the bond is known as the face value of the bond. The discount rate due to which the present payments from the bond become equal to its price i.e. it is the average rate of return which a holder can expect from a bond, is known as Yield to Maturity.
A bond's annual income when divided by the current price of the security is known as the current yield.
Convexity is a measure of the curve in the relationship between a bond's yield and a bond's price.
Answer to Problem 23PS
In view of the answer to (c), it is not possible for two bonds with equal duration, but different convexity, to be priced initially at the same yield to maturity if the yields on both bonds always increased or decreased by equal amounts, as in this example because no one would be willing to buy the lower convexity bond if it always underperforms the other bond.
Explanation of Solution
This condition would not continue for long. If the lower convexity bond results in the under performance of the other bonds, it would not be preferred by the investors. Hence, this will cause a reduction in the prices of the lower convexity bond and it will lead to an increase in its yield to maturity.
Therefore, the initial yield to maturity of the lower convexity bond will be high. The lower convexity will be balanced by the high yield. If the rates register a slight change, the higher yield- lower convexity bond will perform we will display better performance ll. However, if the rates register a substantial change, the lower yield-higher convexity bond will display better performance.
Want to see more full solutions like this?
Chapter 16 Solutions
INVESTMENTS-CONNECT PLUS ACCESS
- Consider a situation involving determining right and wrong. Do you believe utilitarianism provides a more objective viewpoint than moral rights in this context? Why or why not? How about when comparing utilitarianism to principles of justice? Share your thoughts. Reflect on this statement: "Every principle of distributive justice, whether that of the egalitarian, the capitalist, the socialist, the libertarian, or Rawls, in the end is illegitimately advocating some type of equality." Do you agree or disagree with this assertion? Why might someone claim this, and how would you respond?arrow_forwardI need help checking my spreadsheet. Q: Assume that Temp Force’s dividend is expected to experience supernormal growth of 73%from Year 0 to Year 1, 47% from Year 1 to Year 2, 32% from Year 2 to Year 3 and 21% from year3 to year 4. After Year 4, dividends will grow at a constant rate of 2.75%. What is the stock’sintrinsic value under these conditions? What are the expected dividend yield and capital gainsyield during the first year? What are the expected dividend yield and capital gains yield duringthe fifth year (from Year 4 to Year 5)?arrow_forwardwhat are the five components of case study design? Please help explain with examplesarrow_forward
- Commissions are usually charged when a right is exercised. a warrant is exercised. a right is sold. all of the above will have commissions A and B are correct, C is not correctarrow_forwardWhat is Exploratory Research Case Study? What is the main purpose of Exploratory Research?arrow_forwardplease help with how to solve this thank you.arrow_forward
- Question 25 Jasmine bought a house for $225 000. She already knows that for the first $200 000, the land transfer tax will cost $1650. Calculate the total land transfer tax. (2 marks) Land Transfer Tax Table Value of Property Rate On the first $30 000 0% On the next $60 000 0.5% (i.e., $30 001 to $90 000) On the next $60 000 1.0% (i.e., $90 001 to $150 000) On the next $50 000 1.5% (i.e., $150 001 to $200 000) On amounts in excess of $200 000 2.0% 22 5000–200 000. 10 825000 2.5000.00 2 x 25000 =8500 2 maarrow_forwardQuestion 25 Jasmine bought a house for $225 000. She already knows that for the first $200 000, the land transfer tax will cost $1650. Calculate the total land transfer tax. (2 marks) Land Transfer Tax Table Value of Property Rate On the first $30 000 0% On the next $60 000 0.5% (i.e., $30 001 to $90 000) On the next $60 000 1.0% (i.e., $90 001 to $150 000) On the next $50 000 1.5% (i.e., $150 001 to $200 000) On amounts in excess of $200 000 2.0% 225000–200 000 = 825000 25000.002 × 25000 1= 8500 16 50+ 500 2 marksarrow_forwardSuppose you deposit $1,000 today (t = 0) in a bank account that pays an interest rate of 7% per year. If you keep the account for 5 years before you withdraw all the money, how much will you be able to withdraw after 5 years? Calculate using formula. Calculate using year-by-year approach. Find the present value of a security that will pay $2,500 in 4 years. The opportunity cost (interest rate that you could earn from alternative investments) is 5%. Calculate using the formula. Calculate using year-by-year discounting approach. Solve for the unknown in each of the following: Present value Years Interest rate Future value $50,000 12 ? $152,184 $21,400 30 ? $575,000 $16,500 ? 14% $238,830 $21,400 ? 9% $213,000 Suppose you enter into a monthly deposit scheme with Chase, where you have your salary account. The bank will deduct $25 from your salary account every month and the first payment (deduction) will be made…arrow_forward
- Essentials Of InvestmentsFinanceISBN:9781260013924Author:Bodie, Zvi, Kane, Alex, MARCUS, Alan J.Publisher:Mcgraw-hill Education,
- Foundations Of FinanceFinanceISBN:9780134897264Author:KEOWN, Arthur J., Martin, John D., PETTY, J. WilliamPublisher:Pearson,Fundamentals of Financial Management (MindTap Cou...FinanceISBN:9781337395250Author:Eugene F. Brigham, Joel F. HoustonPublisher:Cengage LearningCorporate Finance (The Mcgraw-hill/Irwin Series i...FinanceISBN:9780077861759Author:Stephen A. Ross Franco Modigliani Professor of Financial Economics Professor, Randolph W Westerfield Robert R. Dockson Deans Chair in Bus. Admin., Jeffrey Jaffe, Bradford D Jordan ProfessorPublisher:McGraw-Hill Education