COLLEGE PHYSICS (LL W/WEBASSIGN)
11th Edition
ISBN: 9781337741644
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 20P
A proton and an alpha particle (charge = 2e, mass = 6.64 × 10−27 kg) are initially at rest, separated by 4.00 × 10−15 m. (a) If they are both released simultaneously, explain why you can’t find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance yo, and then helps to
support any additional load. Consider a leaf spring constant of 5.45 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y = 0.500 m.
Truck body
Dyo
Axle
(a) What is the compression of the leaf spring for a load of 4.90 × 105 N?
m
(b) How much work is done compressing the springs?
]
A skier of mass 75 kg is pulled up a slope by a motor-driven cable.
(a) How much work is required to pull him 50 m up a 30° slope (assumed frictionless) at a constant speed of 2.8 m/s?
KJ
(b) What power (expressed in hp) must a motor have to perform this task?
hp
A block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest.
a
x = 0
x
b
(a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum.
cm
(b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation?
cm
Chapter 16 Solutions
COLLEGE PHYSICS (LL W/WEBASSIGN)
Ch. 16.1 - If an electron is released from rest in a uniform...Ch. 16.1 - If a negatively charged particle is placed at rest...Ch. 16.1 - Figure 16.3 is a graph of an electric potential as...Ch. 16.1 - If a negatively charged particle is placed at...Ch. 16.2 - Consider a collection of charges in a given region...Ch. 16.2 - A spherical balloon contains a positively charged...Ch. 16.3 - An electron initially at rest accelerates through...Ch. 16.6 - A capacitor is designed so that one plate is large...Ch. 16.7 - A parallel-plate capacitor is disconnected from a...Ch. 16.8 - A fully charged parallel-plate capacitor remains...
Ch. 16.8 - Consider a parallel-plate capacitor with a...Ch. 16 - A proton is released from rest in a uniform...Ch. 16 - An electron is released from rest in a uniform...Ch. 16 - Figure CQ16.3 shows equipotential contours in the...Ch. 16 - Rank the potential energies of the four systems of...Ch. 16 - A parallel-plate capacitor with capacitance C0...Ch. 16 - An air-filled parallel-plate capacitor with...Ch. 16 - Choose the words that make each statement correct,...Ch. 16 - Why is it important to avoid sharp edges or points...Ch. 16 - Explain why, under static conditions, all points...Ch. 16 - If you are given three different capacitors C1,...Ch. 16 - (a) Why is it dangerous to touch the terminals of...Ch. 16 - The plates of a capacitor are connected to a...Ch. 16 - Rank the electric potentials at the four points...Ch. 16 - If you were asked to design a capacitor in which...Ch. 16 - Is it always possible to reduce a combination of...Ch. 16 - Explain why a dielectric increases the maximum...Ch. 16 - A uniform electric field of magnitude 375 N/C...Ch. 16 - A proton is released from rest in a uniform...Ch. 16 - A potential difference of 90.0 mV exists between...Ch. 16 - Cathode ray tubes (CRTs) used in old-style...Ch. 16 - A constant electric field accelerates a proton...Ch. 16 - A point charge q = +40.0 C moves from A to B...Ch. 16 - Oppositely charged parallel plates are separated...Ch. 16 - (a) Find the potential difference VB required to...Ch. 16 - An ionized oxygen molecule (O+2) at point A has...Ch. 16 - On planet Tehar, the free-fall acceleration is the...Ch. 16 - An electron is at the origin, (a) Calculate the...Ch. 16 - The two charges in Figure P16.12 are separated by...Ch. 16 - (a) Find the electric potential, taking zero at...Ch. 16 - Three charges are situated at corners of a...Ch. 16 - Two point charges Q1 = +5.00 nC and Q2 = 3.00 nC...Ch. 16 - Three identical point charges each of charge q are...Ch. 16 - The three charges in Figure P16.17 are at the...Ch. 16 - A positive point charge q = +2.50 nC is located at...Ch. 16 - A proton is located at the origin, and a second...Ch. 16 - A proton and an alpha particle (charge = 2e, mass...Ch. 16 - A tiny sphere of mass 8.00 g and charge 2.80 nC is...Ch. 16 - The metal sphere of a small Van de Graaff...Ch. 16 - In Rutherfords famous scattering experiments that...Ch. 16 - Four point charges each haring charge Q are...Ch. 16 - Calculate the speed of (a) an electron and (b) a...Ch. 16 - An electric field does 1.50 103 eV of work on a...Ch. 16 - An alpha particle, which has charge 3.20 1019 C,...Ch. 16 - In the classical model of a hydrogen atom, an...Ch. 16 - Consider the Earth and a cloud layer 8.0 102 m...Ch. 16 - (a) When a 9.00-V battery is connected to the...Ch. 16 - An air-filled parallel-plate capacitor has plates...Ch. 16 - Air breaks down and conducts charge as a spark if...Ch. 16 - An air-filled capacitor consists of two parallel...Ch. 16 - A 1-megabit computer memory chip contains many...Ch. 16 - a parallel-plate capacitor with area 0.200 m2 and...Ch. 16 - A small object with a mass of 350. g carries a...Ch. 16 - Given a 2.50-F capacitor, a 6.25-F capacitor, and...Ch. 16 - Two capacitors, C1 = 5.00 F and C2 = 12.0 F, are...Ch. 16 - Find (a) the equivalent capacitance of the...Ch. 16 - Two capacitors give an equivalent capacitance of...Ch. 16 - For the system of capacitors shown in Figure...Ch. 16 - Consider the combination of capacitors in Figure...Ch. 16 - Find the charge on each of the capacitors in...Ch. 16 - Three capacitors are connected to a battery as...Ch. 16 - A 25.0-F capacitor and a 40.0-F capacitor are...Ch. 16 - (a) Find the equivalent capacitance between points...Ch. 16 - A 1.00-F capacitor is charged by being connected...Ch. 16 - Four capacitors are connected as shown in Figure...Ch. 16 - A 12.0 V battery is connected to a 4.50 F...Ch. 16 - Two capacitors, C1 = 18.0 F and C2 = 36.0 F, are...Ch. 16 - A parallel-plate capacitor has capacitance 3.00 F....Ch. 16 - Each plate of a 5.00 F capacitor stores 60.0 C of...Ch. 16 - The voltage across an air-filled parallel-plate...Ch. 16 - (a) How much charge can be placed on a capacitor...Ch. 16 - Determine (a) the capacitance and (b) the maximum...Ch. 16 - A parallel-plate capacitor has plates of area A =...Ch. 16 - A model of a red blood cell portrays the cell as a...Ch. 16 - When a potential difference of 150. V is applied...Ch. 16 - Three parallel-plate capacitors are constructed,...Ch. 16 - For the system of four capacitors shown in Figure...Ch. 16 - A parallel-plate capacitor with a plate separation...Ch. 16 - Two capacitors give an equivalent capacitance of...Ch. 16 - A parallel-plate capacitor is constructed using a...Ch. 16 - Two charges of 1.0 C and 2.0 C are 0.50 m apart at...Ch. 16 - Find the equivalent capacitance of the group of...Ch. 16 - A spherical capacitor consists of a spherical...Ch. 16 - The immediate cause of many deaths is ventricular...Ch. 16 - When a certain air-filled parallel-plate capacitor...Ch. 16 - Capacitors C1 = 6.0 F and C2 = 2.0 F are charged...Ch. 16 - Two positive charges each of charge q are fixed on...Ch. 16 - Metal sphere A of radius 12.0 cm carries 6.00 C of...Ch. 16 - An electron is fired at a speed v0 = 5.6 106 m/s...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m = 3.00 kg situated on a rough incline at an angle of 0 = 37.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (see the figure below). The pulley is frictionelss. The block is released from rest when the spring is unstretched. The block moves 11.0 cm down the incline before coming to rest. Find the coefficient of kinetic friction between block and incline. k=100 N/m Ө marrow_forward23. What is the velocity of a beam of electrons that goes undeflected when passing through perpendicular electric and magnetic fields of magnitude 8.8 X 103 V/m and 7.5 X 10-3 T. respectively? What is the radius of the electron orbit if the electric field is turned off?arrow_forward10. A light bulb emits 25.00 W of power as visible light. What are the average electric and magnetic fields from the light at a distance of 2.0 m?arrow_forward
- 9. Some 1800 years ago Roman soldiers effectively used slings as deadly weapons. The length of these slings averaged about 81 cm and the lead shot that they used weighed about 30 grams. If in the wind up to a release, the shot rotated around the Roman slinger with a period of .15 seconds. Find the maximum acceleration of the shot before being released in m/s^2 and report it to two significant figures.arrow_forwardIn the movie Fast X, a 10100 kg round bomb is set rolling in Rome. The bomb gets up to 17.6 m/s. To try to stop the bomb, the protagonist Dom swings the counterweight of a crane, which has a mass of 354000 kg into the bomb at 3.61 m/s in the opposite direction. Directly after the collision the crane counterweight continues in the same direction it was going at 2.13 m/s. What is the velocity (magnitude and direction) of the bomb right after the collision?arrow_forwardDon't use aiarrow_forward
- Make sure to draw a sketch with scale as wellarrow_forwardMake sure to draw a sketch with scalearrow_forwardUltimate Byleth and Little Mac fight. Little Mac, who is a boxer, dashes forward at 26.6 m/s, fist first. Byleth moves in the opposite direction at 3.79 m/s, where they collide with Little Mac’s fist. After the punch Byleth flies backwards at 11.1 m/s. How fast, and in what direction, is Little Mac now moving? Little Mac has a mass of 48.5 kg and Byleth has a mass of 72.0 kg.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY