Industrial Motor Control
7th Edition
ISBN: 9781133691808
Author: Stephen Herman
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 16, Problem 1RQ
Proximity detectors are basically _____________
__________________________________________.
Expert Solution & Answer
To determine
Proximity detector.
Explanation of Solution
Proximity detectors are sensors used to sense an object's presence without touching it directly. It stops the detector from wearing and allows it to handle hot red metals. Proximity detectors work on different principles. Many metal detectors detect only iron metals, while others could sense all types of metals.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
cutting
Instructions:
Do not copy the drawing.
Draw In third-angle orthographic projection, and to scale 1:1,
the following views of the hinge:
A sectional front view on A-A
A top view
⚫ A right view (Show all hidden detail)
Show the cutting plane in the top view
. Label the sectioned view
Note:
All views must comply with the SABS 0111 Code of Practice for
Engineering Drawing.
Galaxy A05s
Assessment criteria:
⚫ Sectional front view
026
12
042
66
[30]
11
10
1. Plot the moment (M), axial (N), and shear (S) diagrams as functions of z.
a)
b)
F₁ = 1250 N
F₁ = 600 N
M₁ = 350 000 N mm
F2 = 500 N
200 N
a = 600 mm
b=1000 mm
a=750 mm
b = 1000 mm
d)
M₁ = 350 000 N mm
F₁ = 600 N
F₂ =200 N
a = 600 mm
b = 1000 mm
M₁ 175 000 Nmm
F = 900 N
a-250 mm
b-1000 mm
-250 mm.
Figure 1: Schematics problem 1.
Given the following cross-sections (with units in mm):
b)
t=2
b=25
h=25
t = 1.5
b=20
b=25
t=2
I
t = 1.5
a=10
b=15
h-25
b=15
t=3
T
h=25
Figure 3: Cross-sections for problem 2.
1. For each of them, calculate the position of the centroid of area with respect to the given coordinate system
and report them in the table below.
2. For each of them, calculate the second moments of inertia I...
and I, around their respective centroid
of area and report them in the table below. Note: use the parallel axes theorem as much as possible to
minimize the need to solve integrals.
Centroid position
x
y
box
Moment of inertia
lyy
by
a)
b)
c)
d)
e)
Chapter 16 Solutions
Industrial Motor Control
Ch. 16 - Proximity detectors are basically...Ch. 16 - What is the basic principle of operation used with...Ch. 16 - Prob. 3RQCh. 16 - What type of electric circuit is used to increase...Ch. 16 - What type of proximity detector uses an oscillator...Ch. 16 - Prob. 6RQCh. 16 - Prob. 7RQCh. 16 - How is it possible for an ultrasonic proximity...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Problem 1: Analyze the canard-wing combination shown in Fig. 1. The canard and wing are made of the same airfoil section and have AR AR, S = 0.25, and = 0.45% 1. Develop an expression for the moment coefficient about the center of gravity in terms of the shown parameters (, and zg) and the three-dimensional aerodynamic characteristics of the used wing/canard (CL C and CM). 2. What is the range of the cg location for this configuration to be statically stable? You may simplify the problem by neglecting the upwash (downwash) effects between the lifting surfaces and the drag contribution to the moment. You may also assume small angle approximation. Figure 1: Canard-Wing Configuration.arrow_forwardProblem 2: Consider the Boeing 747 jet transport, whose layout is shown in Fig. 2 and has the following characteristics: xoa 0.25, 8 5500/2, b 195.68ft, 27.31ft, AR, 3.57, V = 0.887 Determine the wing and tail contributions to the CM-a curve. You may want to assume CM, reasonable assumptions (e.g., -0.09, 0, -4°. i=0.0°, and i = -2.0°. Make any other 0.9).arrow_forwardZ Fy = 100 N Fx = 100 N F₂ = 500 N a = 500 mm b = 1000 mm Figure 2: Schematics for problem 3. 1. Draw the moment (M), axial (N), and shear (S) diagrams. Please note that this is a 3D problem and you will have moment (M) and shear (S) along two different axes. That means that you will have a total of 5 diagrams.arrow_forward
- An ideal gas with MW of 29 g/mol, cp = 1.044 kJ/kgK and c₁ = 0.745 kJ/kgK contained in a cylinder-piston assembly initially has a pressure of 175 kPa, a temperature of 22°C, and a volume of 0.30 m³. It is heated slowly at constant volume (process 1-2) until the pressure is doubled. It is then expanded slowly at constant pressure (process 2-3) until the volume is doubled. Draw a figure of the system and the PV diagram showing each state and the path each process takes. Determine the total work done by the system and total heat added (J) in the combined process.arrow_forwardplease explain each method used, thank youarrow_forwardDetermine the resultant loadings acting on the cross sections at points D and E of the frame.arrow_forward
- please read everything properly... Take 3 4 5 hrs but solve full accurate drawing on bond paper don't use chat gpt etc okk.... Not old solutions just new solvearrow_forwardplease box out or highlight all the answersarrow_forwardWhat are some ways Historical Data can be used and applied to an estimate?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningUnderstanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Understanding Motor Controls
Mechanical Engineering
ISBN:9781337798686
Author:Stephen L. Herman
Publisher:Delmar Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Mod-01 Lec-16 Basics of Instrumentation; Author: nptelhrd;https://www.youtube.com/watch?v=qbKnW42ZM5c;License: Standard YouTube License, CC-BY