Concept explainers
Whether the gain in organized kinetic energy, as a car burns more gasoline, contradicts second law of

Answer to Problem 1RQ
Solution:
No.
Explanation of Solution
Introduction:
Energy of an isolated system, such as the universe always remains constant, as stated by the law of conservation of energy. Energy is transformed into various forms such as disordered form of energy (thermal energy) or ordered form of energy (kinetic and potential energy).
Energy available in the universe is in ordered and disordered form. Although the energy is conserved at all times, only the energy thatcan be used to provide a useful work is of factual importance.
Second law of thermodynamics states that a system's ability to perform work depends upon the amount of organized form of energy present. Also, it is impossible to develop an engine thatcan convert all the disorganized form of energy (thermal energy) to useful work.
Explanation:
Gasoline is used to run the engine of the car. The engine of the car uses the chemical energy of the fuel and converts it into useful work to power the car. At first, this might seem to contradict the second law of thermodynamics, but it actually does not. This is because along with the useful work, a large amount of thermal energy is exhausted and energy in the form of sound is also lost (both being less organized form of energy), when gasoline is burnt.
So, as the car moves faster and faster, it does gain organized energy but for that more and more amount of fuel is burnt, which in turn increases the energy thatis lost to the environment. Hence, the organized form of energy (kinetic energy) gained by the car will never be more than that present in the gasoline (chemical energy).
The second law states that the ability to perform work depends upon the amount of organized form of energy present, so more the speed, more will be the amount of fuel burnt and more amount of energy will be lost.
Conclusion:
Therefore, burning of gasoline to gain organized kinetic energy does not contradict second law of thermodynamics.
Want to see more full solutions like this?
Chapter 16 Solutions
College Physics: Explore And Apply, Volume 2 (2nd Edition)
- A man holds a double-sided spherical mirror so that he is looking directly into its convex surface, 33 cm from his face. The magnification of the image of his face is +0.17. What will be the image distance when he reverses the mirror (looking into its concave surface), maintaining the same distance between the mirror and his face? Be sure to include the algebraic sign (+ or -) with your answer.arrow_forwardHow do you draw a diagram of the ruler and mass system in equilibrium identifying the anti-clockwise torque and clockwise torque? How do I calculate the anti-clockwise torque and the clockwise torque of the system with the ruler and the washers, does it come from the data in table 4? Please help, thank you!arrow_forwardExample Double pane windows have two panes of glass (n = 1.5), with a layer of air sandwiched between them. If light from outside enters the first pane at an angle of 25° from the surface normal, what angle does it enter the house at? ☑ 3 5arrow_forward
- Did your experiment results in Data Table 3 verify, to within a reasonable experimental error, the condition of equilibrium of Equation 6: Στanti-clockwise = Στclockwise? Support your response with experimental data. What does this Σ mean? My results do not show they are equal to each other, what does this mean then, and what does the data show? Thanks!arrow_forwardmicro wave.arrow_forwardmicro wave.arrow_forward
- kerjakanarrow_forwardAn object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary. bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago Show feedback bookmark_border1.0p3b Is the image real or virtual? Real Virtual Updated 6 days ago Show feedback bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated 7 minutes ago Show feedback bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answerarrow_forwardn object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary. bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago Show feedback bookmark_border1.0p3b Is the image real or virtual? Real Virtual Updated 6 days ago Show feedback bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated just now Show feedback bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answerarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





