Concept explainers
RECALL Define the following terms: polysaccharide, furanose, pyranose, aldose, ketose, glycosidic bond, oligosaccharide, glycoprotein.
Interpretation:
The given terms are to be defined.
Concept introduction:
A long chain of monosaccharides linked by glycosidic bonds is known as a polysaccharide. A five-membered cyclic ring of sugar is furanose and a six-membered cyclic ring is pyranose. A monosaccharide containing an aldehydic group is called an aldose, and if it contains a ketonic group then it is called a ketose. The hydroxyl
Answer to Problem 1RE
Solution:
Polysaccharide: It is a large molecule made up of a large number of monosaccharides that are bound together with glycosidic linkages.
Pyranose: It is a six-membered cyclic sugar consisting of five carbon atoms along with one oxygen atom.
Furanose: It is a five-membered cyclic sugar consisting of four carbon atoms along with one oxygen atom.
Aldose: It is a monosaccharide (a simple sugar) that contains an aldehydic group
Ketose: It is a monosaccharide (a simple sugar) that contains a ketonic group
Glycosidic bond or glycosidic linkage: It is a type of covalent bond that joins one carbohydrate molecule to another carbohydrate molecule.
Oligosaccharide: It is a saccharide polymer that contains a small number of monosaccharides, typically 3–10 monosaccharides molecules.
Glycoproteins: These proteins consist of oligosaccharides that are covalently attached to proteins (or amino acids).
Explanation of Solution
Given information: Polysaccharides, pyranose, furanose, aldose, ketose, glycoside bond, oligosaccharide, and glycoprotein.
Polysaccharide: It is a polymer that consists of a large number of monosaccharides, typically around 20 or more. They are of two types, namely, homopolysaccharides, which consist of a single type of single monosaccharide unit, and heterpolysaccharides, which consist of different monosaccharide units. For example, glycogen, a homopolysacccharide, forms glucose units.
Pyranose: The chemical structure of pyranose contains a six-membered ring, which includes five carbon atoms and one oxygen atom. The formation of pyranose takes place by the reaction of alcoholic group of carbon-5 of an open chain with the aldehydic group of carbon-1 of a similar chain.
Furanose: The chemical structure of furanose contains a five-membered ring that includes four carbon atoms and one oxygen atom. The formation of pyranose takes place by the reaction of alcoholic group of carbon-4 of an open chain with the aldehydic group of carbon-1 of a similar chain.
Aldose: This is a class of carbohydrates that has an aldehydic group and is known as polyhydroxy aldehydes. Aldoses are also called reducing sugars for they act as a reducing agent because of the presence of the aldehydic group. They reduce Tollen’s reagent. For example, glucose.
Ketose: This is a class of carbohydrates that have a ketonic group and is also known as polyhydroxy ketones. They are not reducing sugars but they tautomerize themselves to aldoses before acting as a reducing sugar. For example, fructose
Glycosidic bond: It is a covalent bond that joins a carbohydrate to another carbohydrate or functional group of any other molecule. A substance containing a glycosidic bond is called a glycoside. For example, the glycosidic linkage of two glucose molecules is shown in the following figure:
Oligosaccharides: Such carbohydrates contain 3–10 simple sugars that are linked together. They are naturally found in plants and onions. They are soluble fibers and hence easy to digest. Most common examples are sucrose, maltose, and lactose.
Glycoprotein: It is a type of protein that has a carbohydrate attached to it. This carbohydrate is an oligosaccharide that is covalently attach to a polypeptide chain of protein. It is usually found in aloe vera, brown rice, meat, and so on. They play an important function in the reproduction, immune system, hormone balance, and protection of cells.
All the terms have been defined, along with their structures being described.
Want to see more full solutions like this?
Chapter 16 Solutions
Biochemistry
- a) What are the differences between the Direct & Indirect Immunofluorescence Assays? (0.5 mark) b) What are the advantages of the Indirect Immunofluorescence Assays? (0.5 mark) c) A Super-Resolution Imaging Technique was developed in 2018 using imidazole, a His-tag ligand conjugated with a fluorophore to report the presence of a recombinant His-tag protein target, (Sci Rep, 2018, 8:5507). How does this technique improve the image quality? (2 marks)arrow_forwarda) What are the differences between the Direct & Indirect Immunofluorescence Assays? b) What are the advantages of the Indirect Immunofluorescence Assays? c) A Super-Resolution Imaging Technique was developed in 2018 using imidazole, a His-tag ligand conjugated with a fluorophore to report the presence of a recombinant His-tag protein target, (Sci Rep, 2018, 8:5507). How does this technique improve the image quality?arrow_forwardCalculate the number of ATP produced from oxidation of 1 molecule of glucosearrow_forward
- Example 1: 1. Suppose an enzyme (MW = 5,000 g/mole) has a concentration of 0.05 mg/L. If the kcat is 1 x 10 s, what is the theoretical maximum reaction velocity for the enzyme? A) 1050 µM/s. B) 100 µM/s. C) 150 μM/s. D) 105 μM/s.arrow_forwardIn 1956, E. P. Kennedy and S. B. Weiss published their study of membrane lipid phosphatidylcholine (lecithin) synthesis in rat liver. Their hypothesis was that phosphocholine joined with some cellular component to yield lecithin. In an earlier experiment, incubating 32 P-labeled phosphocholine at physiological temperature (37 °C) with broken cells from rat liver yielded labeled lecithin. This became their assay for the enzymes involved in lecithin synthesis. Determine the optimal pH for this enzyme and characterize the enzyme activity at different pH values. -O-P-O-CH2-CH₁₂-N(CH3)3 Phosphocholine H₂C-O-C-R HC-O-C-R2 + + + Cell fraction + ? HC-O-P-O-CH₁₂-CH₂-N(CH), O Phosphatidylcholine The researchers then centrifuged the broken cell preparation to separate the membranes from the soluble proteins. They tested three preparations: whole extract, membranes, and soluble proteins. Table 1 summarizes the results. Table 1: Cell fraction requirement for incorporation of 32p-phosphocholine into…arrow_forwardResearchers isolated an unknown substance, X, from rabbit muscle. They determined its structure from the following observations and experiments. (a) Qualitative analysis showed that X was composed entirely of C, H, and O. A weighed sample of X was completely oxidized and the H2O and CO2 produced were measured. This quantitative analysis revealed that X contained 40.00% C, 6.71% H, and 53.29% O by weight. (b) The molecular mass of X, as determined by mass spectrometry, was 90.00 atomic mass units (u). (c) Infrared spectroscopy showed that X contained one double bond. (d) X dissolved readily in water, and the solution demonstrated optical activity when tested in a polarimeter. (e) The aqueous solution of X is acidic. What is the empirical formula of X?arrow_forward
- Show work. don't give Ai generated solution....give correct solutionarrow_forwardBiochemistry What is the process of "transamination" in either the muscles or the liver, that involves keto acid or glutamic acid? Please explain how the steps work. Thank you!arrow_forwardBiochemistry Please help. Thank you What is the importance of glutamic acid in the metabolism of nitrogen from amino acids? (we know therole; it’s used to remove the nitrogen from amino acids so that the remaining carbon skeleton can bebroken down by the “usual” pathways, but what is the important, unique role that only glutamicacid/glutamate can do?)arrow_forward
- Biochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?arrow_forwardBiochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forwardBiochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forward
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning