Concept explainers
To rank:
The waves according to
a) their wave speed
b) the tension in the string along which they travel
Answer to Problem 1Q
Solution:
a) The waves can be ranked according to their wave speed as
b) The waves can be ranked according to their tension in the string along which they travel as
Explanation of Solution
1) Concept:
We can use the concept of the equation of transverse wave and speed of a travelling wave. The wave speed on a stretched string gives the relation between speed and tension in the string.
2) Formulae:
i)
ii)
iii)
3) Given:
The four waves along the strings with the same linear densities are
i)
ii)
iii)
iv)
4) Calculations:
a) Rank the waves according to their wave speed :
The equation of transverse wave is
The speed of the travelling wave is
The equation (i),
Compare this equation with equation (1), then the speed of the travelling wave is
The equation (ii) is
Compare this equation with equation (1), then the speed of the travelling wave is
The equation (iii) is
Compare this equation with equation (1), then the speed of the travelling wave is
The equation (iv) is
Compare this equation with equation (1), then the speed of the travelling wave is
Hence, the rank of the waves according to the wave speed is
b) Rank the waves according to tension:
The wave speed on a stretched string is
The speed on the stretched string is directly proportional to the tension in the string with the same linear density.
The speed on the stretched string for equation (i) is
The speed on the stretched string for equation (ii) is
The speed on the stretched string for equation (iii) is
The speed on the stretched string for equation (i) is
Hence, the rank of the waves according to their tension is
Conclusion:
We can find the wave speed by using its expression and rank their values. By using the expression of the speed on the stretched string, we can find thetension in each string and rank their values.
Want to see more full solutions like this?
Chapter 16 Solutions
Fundamentals Of Physics - Volume 1 Only
- No chatgpt pls will upvotearrow_forwardthe cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forward
- The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forwardPart A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forward
- The 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forwardThe members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning