![Electric Circuits (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780133760033/9780133760033_largeCoverImage.gif)
Concept explainers
a.
Calculate the fundamental frequency
a.
![Check Mark](/static/check-mark.png)
Answer to Problem 1P
The fundamental frequency
Explanation of Solution
Calculation:
Consider that the expression for the fundamental frequency
Substitute
Substitute
Conclusion:
Thus, the fundamental frequency
b.
Calculate the frequency
b.
![Check Mark](/static/check-mark.png)
Answer to Problem 1P
The fundamental frequency
Explanation of Solution
Calculation:
Consider that the expression for the frequency
Substitute
Substitute
Conclusion:
Thus, the fundamental frequency
c.
Calculate the Fourier co-efficient
c.
![Check Mark](/static/check-mark.png)
Answer to Problem 1P
The Fourier co-efficient
Explanation of Solution
Calculation:
Calculate the Fourier co-efficient
For the periodic voltage in part (b), the Fourier co-efficient
Conclusion:
Thus, the Fourier co-efficient
d.
Calculate the Fourier co-efficients
d.
![Check Mark](/static/check-mark.png)
Answer to Problem 1P
The Fourier co-efficients
Explanation of Solution
Calculation:
Consider that the periodic function in Figure P16.1(a). The Fourier co-efficient
Calculate the Fourier co-efficient
Calculate the Fourier co-efficient
Consider that the periodic function in Figure P16.1(b). The Fourier co-efficient
Calculate the Fourier co-efficient
Calculate the Fourier co-efficient
The value of
Conclusion:
Thus, the Fourier co-efficients
e.
Derive the Fourier series expression for the voltage
e.
![Check Mark](/static/check-mark.png)
Answer to Problem 1P
The Fourier series expression of voltage
Explanation of Solution
Calculation:
Write the Fourier series expression of voltage
Write the Fourier series expression of voltage
Conclusion:
Thus, the Fourier series expression of voltage
Want to see more full solutions like this?
Chapter 16 Solutions
Electric Circuits (10th Edition)
- Problems A.1 The square-law modulator is a device for the generation of DSB-PC-AM signals. In the square-law modulator, the sum of the modulating signal and the carrier wave forms the input signal to a nonlinear device. The output signal of the nonlinear device is a linear combination of the input signal and the square of the input signal. The output signal of the nonlinear device is then band-pass filtered. The BPF has a center frequency that is the same as the carrier frequency and a bandwidth that is twice the message bandwidth. Show the output of the BPF is a DSB-PC-AM signal, and determine a requirement between the carrier frequency and the message bandwidth that must be satisfied.arrow_forwardGive the current voltage relationship of the D-MOSFET and E-MOSFET.arrow_forwardAnswer A is wrong.arrow_forward
- The part of machine level instruction, which tells the central processor what was to be done is: A. Address B. None of the above C. Operation code D. Operandarrow_forwardWhich of the following statement is TRUE? 1. In RISC processors, each instruction requires only two clock cycles to complete, resulting in consistent execution time 2. RISC has more transistors and fewer registers 3. RISC has more registers and fewer transistorsarrow_forwardDifferentiate between JFET and BJT.arrow_forward
- Give relation between αdc and βdc.arrow_forwardFind the power delivered across the 45 ohm resistorarrow_forwardA half-wave controlled rectifier is supplied by a 230 Vrms voltage source and has load resistance of 2502. Calculate the delay angle a that produces a load-absorbed power of 200W.arrow_forward
- not use ai pleasearrow_forwardFigure 1 shows a half-wave controlled rectifier which is supplied by a Vin = 120 Vrms voltage source. Assume that the load resistance is R = 10 2. Determine: a) The firing angle a of the thyristor to produce an average output voltage 50Vdc. Vin=Vmsinoot b) The average power Po absorbed by the load R. Figure 1 R = 1092arrow_forwardQ1. What is power dissipation in the Zener diode circuit given for a) RL=100 Ohm ? b) RL=∞arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
![Text book image](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)