CHEMISTRY >CUSTOM<
CHEMISTRY >CUSTOM<
8th Edition
ISBN: 9781309097182
Author: SILBERBERG
Publisher: MCG/CREATE
bartleby

Videos

Question
Book Icon
Chapter 16, Problem 16.85P

(a)

Interpretation Introduction

Interpretation:

The reason for water does not appear in the rate law has to be explained.

Concept introduction:

Reaction: Substances which are mutually involved each other in a chemical process and changed into different substances.

Mechanism of a reaction: The representation of step by step process involved in the chemical process is said to be mechanism of a chemical reaction.

Elementary step: The first step in a reaction mechanism is said to be elementary step.

Intermediate: Sometimes, in between the reaction some separable amount and useful amount of substances are formed during the reaction and which are said to be intermediates

(a)

Expert Solution
Check Mark

Explanation of Solution

The given reaction involves multiple mechanism steps, by adding the entire individual steps gives rise to an overall reaction equation. Hence, the reaction equation as follows,

(CH3)3CBr(CH3)3C++Br[slow](CH3)3C++H2O(CH3)3COH2+[fast](CH3)3COH2+H++(CH3)3COH[fast]_(CH3)3CBr+H2O(CH3)3COH+H++BrOverallreaction_

In the reaction, the slow step is the rate determining step; and its rate law is the overall rate law. The overall equation becomes,

(CH3)3CBr+H2O(CH3)3COH+H++Br

Water does not appear in the rate law, as the water act as solvent in the reaction. The concentration of water is assumed not to change even though some water is used up as a reactant. Thus, the assumption is valid as long as the solute concentration is low.

(b)

Interpretation Introduction

Interpretation:

The rate laws for elementary steps have to be written.

Concept introduction:

Rate law or rate equation: The relationship between the reactant concentrations and reaction rate is expressed by an equation.

aA + bBxXRate of reaction = k [A]m[B]nTotalorderof reaction = (m + n).

Reaction Rate = k [A]m[B]n[C]p,where 'm, n and p' are orders of the reactants.

Order of a reaction: The order of a reaction with respect to a particular reactant is the exponent of its concentration term in the rate law expression, and the overall reaction order is the sum of the exponents on all concentration terms.

Rate constant, k: It is a proportionality constant that relates rate and concentration at a given temperature.

(b)

Expert Solution
Check Mark

Explanation of Solution

  • Step 1: (CH3)3CBr(CH3)3C++Br[slow]

The rate law of the above step is Rate1 = k [(CH3)3CBr].

  • Step 2: (CH3)3C++H2O(CH3)3COH2+[fast]

The rate law of the above step is Rate2 = k [(CH3)3C+].

  • Step 3: (CH3)3COH2+H++(CH3)3COH[fast]

The rate law of the above step is Rate3 = k [(CH3)3C-OH2+].

(c)

Interpretation Introduction

Interpretation:

The reaction intermediates that appear in the given mechanism have to be identified.

Concept introduction:

Reaction: Substances which are mutually involved each other in a chemical process and changed into different substances.

Mechanism of a reaction: The representation of step by step process involved in the chemical process is said to be mechanism of a chemical reaction.

Elementary step: The first step in a reaction mechanism is said to be elementary step.

Intermediate: Sometimes, in between the reaction some separable amount and useful amount of substances are formed during the reaction and which are said to be intermediates

(c)

Expert Solution
Check Mark

Explanation of Solution

The given reaction involves multiple mechanism steps, by adding the entire individual steps gives rise to an overall reaction equation. Hence, the reaction equation as follows,

(CH3)3CBr(CH3)3C++Br[slow](CH3)3C++H2O(CH3)3COH2+[fast](CH3)3COH2+H++(CH3)3COH[fast]_(CH3)3CBr+H2O(CH3)3COH+H++BrOverallreaction_

In the reaction, the intermediates are produced in one step and consumed in the following steps; thus, the intermediates are, ((CH3)3C+), and ((CH3)3COH2+).

(d)

Interpretation Introduction

Interpretation:

The given mechanism whether consistent with the experimental rate law has to be shown.

Concept introduction:

Reaction: Substances which are mutually involved each other in a chemical process and changed into different substances.

Mechanism of a reaction: The representation of step by step process involved in the chemical process is said to be mechanism of a chemical reaction.

Elementary step: The first step in a reaction mechanism is said to be elementary step.

Intermediate: Sometimes, in between the reaction some separable amount and useful amount of substances are formed during the reaction and which are said to be intermediates

(d)

Expert Solution
Check Mark

Explanation of Solution

The given reaction involves multiple mechanism steps, by adding the entire individual steps gives rise to an overall reaction equation. Hence, the reaction equation as follows,

(CH3)3CBr(CH3)3C++Br[slow](CH3)3C++H2O(CH3)3COH2+[fast](CH3)3COH2+H++(CH3)3COH[fast]_(CH3)3CBr+H2O(CH3)3COH+H++BrOverallreaction_

In the reaction, the intermediates are produced in one step and consumed in the following steps; thus, the intermediates are, ((CH3)3C+), and ((CH3)3COH2+).

(CH3)3CBr(CH3)3C++Br[slow]

The rate law for the above reaction is, Rate = k[(CH3)3CBr]        (1)

Therefore, the overall reaction rate is as same as the rate of slowest reaction step that is proven as shown above.

Therefore, the given rate law is consistent with the rate law of overall reaction Rate = k[(CH3)3CBr]. The proposed mechanism is valid.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
What's the difference between base physical quantity and derived physical quantity
Give me detailed mechanism Solution with explanation needed...don't give Ai generated solution. Avoid handwritten Solution
My question is for the three structures can you show me since the rule for resonance is that resonance occurs between sp2 hybridized atoms NOT sp3 trick. Thenfor ost of the c its easier to understand and follow but for the Oxygen portion im confused on wether its sp2 or sp3. Can you help me determine this things in some manner please show me why so I can understand and then with that info I can apply and use it as a delocalized lone pair and localized lone pair.

Chapter 16 Solutions

CHEMISTRY >CUSTOM<

Ch. 16.4 - Substance X (black) changes to substance Y (red)...Ch. 16.4 - Prob. 16.6BFPCh. 16.4 - Prob. 16.7AFPCh. 16.4 - Prob. 16.7BFPCh. 16.5 - Prob. 16.8AFPCh. 16.5 - Prob. 16.8BFPCh. 16.5 - Prob. 16.9AFPCh. 16.5 - Prob. 16.9BFPCh. 16.6 - The mechanism below is proposed for the...Ch. 16.6 - Prob. 16.10BFPCh. 16.6 - Prob. 16.11AFPCh. 16.6 - Prob. 16.11BFPCh. 16.7 - Prob. B16.1PCh. 16.7 - Aircraft in the stratosphere release NO, which...Ch. 16.7 - Prob. B16.3PCh. 16 - Prob. 16.1PCh. 16 - Prob. 16.2PCh. 16 - A reaction is carried out with water as the...Ch. 16 - Prob. 16.4PCh. 16 - Prob. 16.5PCh. 16 - Prob. 16.6PCh. 16 - Prob. 16.7PCh. 16 - Prob. 16.8PCh. 16 - Prob. 16.9PCh. 16 - Prob. 16.10PCh. 16 - Prob. 16.11PCh. 16 - Prob. 16.12PCh. 16 - Prob. 16.13PCh. 16 - Prob. 16.14PCh. 16 - Prob. 16.15PCh. 16 - Prob. 16.16PCh. 16 - Prob. 16.17PCh. 16 - Prob. 16.18PCh. 16 - Prob. 16.19PCh. 16 - Prob. 16.20PCh. 16 - Prob. 16.21PCh. 16 - Prob. 16.22PCh. 16 - Prob. 16.23PCh. 16 - Prob. 16.24PCh. 16 - Prob. 16.25PCh. 16 - Prob. 16.26PCh. 16 - Prob. 16.27PCh. 16 - Prob. 16.28PCh. 16 - By what factor does the rate in Problem 16.27...Ch. 16 - Prob. 16.30PCh. 16 - Prob. 16.31PCh. 16 - Prob. 16.32PCh. 16 - Prob. 16.33PCh. 16 - Prob. 16.34PCh. 16 - Prob. 16.35PCh. 16 - Prob. 16.36PCh. 16 - Give the overall reaction order that corresponds...Ch. 16 - Phosgene is a toxic gas prepared by the reaction...Ch. 16 - How are integrated rate laws used to determine...Ch. 16 - Define the half-life of a reaction. Explain on the...Ch. 16 - For the simple decomposition reaction AB(g) ⟶A(g)...Ch. 16 - For the reaction in Problem 16.41, what is [AB]...Ch. 16 - The first-order rate constant for the reaction A...Ch. 16 - The molecular scenes below represent the...Ch. 16 - In a first-order decomposition reaction, 50.0% of...Ch. 16 - A decomposition reaction has a rate constant of...Ch. 16 - In a study of ammonia production, an industrial...Ch. 16 - Prob. 16.48PCh. 16 - Prob. 16.49PCh. 16 - Prob. 16.50PCh. 16 - Prob. 16.51PCh. 16 - Prob. 16.52PCh. 16 - Prob. 16.53PCh. 16 - Prob. 16.54PCh. 16 - Prob. 16.55PCh. 16 - Assuming the activation energies are equal, which...Ch. 16 - For the reaction A(g) + B(g) ⟶AB(g), how many...Ch. 16 - Prob. 16.58PCh. 16 - Prob. 16.59PCh. 16 - Prob. 16.60PCh. 16 - The rate constant of a reaction is 4.7×10−3 s−1 at...Ch. 16 - The rate constant of a reaction is 4.50×10−5...Ch. 16 - Prob. 16.63PCh. 16 - For the reaction A2 + B2 → 2AB, Ea(fwd) = 125...Ch. 16 - Prob. 16.65PCh. 16 - Prob. 16.66PCh. 16 - Prob. 16.67PCh. 16 - Explain why the coefficients of an elementary step...Ch. 16 - Is it possible for more than one mechanism to be...Ch. 16 - What is the difference between a reaction...Ch. 16 - Why is a bimolecular step more reasonable...Ch. 16 - Prob. 16.72PCh. 16 - If a fast step precedes a slow step in a two-step...Ch. 16 - Prob. 16.74PCh. 16 - Prob. 16.75PCh. 16 - In a study of nitrosyl halides, a chemist proposes...Ch. 16 - Prob. 16.77PCh. 16 - Consider the reaction . Does the gold catalyst...Ch. 16 - Does a catalyst increase reaction rate by the same...Ch. 16 - In a classroom demonstration, hydrogen gas and...Ch. 16 - Prob. 16.81PCh. 16 - Prob. 16.82PCh. 16 - Prob. 16.83PCh. 16 - Consider the following reaction energy...Ch. 16 - Prob. 16.85PCh. 16 - Prob. 16.86PCh. 16 - A slightly bruised apple will rot extensively in...Ch. 16 - Prob. 16.88PCh. 16 - Prob. 16.89PCh. 16 - Prob. 16.90PCh. 16 - Prob. 16.91PCh. 16 - The citric acid cycle is the central reaction...Ch. 16 - Prob. 16.93PCh. 16 - Prob. 16.94PCh. 16 - Prob. 16.95PCh. 16 - Prob. 16.96PCh. 16 - For the reaction A(g) + B(g) ⟶ AB(g), the rate is...Ch. 16 - The acid-catalyzed hydrolysis of sucrose occurs by...Ch. 16 - At body temperature (37°C), the rate constant of...Ch. 16 - Is each of these statements true? If not, explain...Ch. 16 - For the decomposition of gaseous dinitrogen...Ch. 16 - Prob. 16.102PCh. 16 - Suggest an experimental method for measuring the...Ch. 16 - Prob. 16.104PCh. 16 - Many drugs decompose in blood by a first-order...Ch. 16 - Prob. 16.106PCh. 16 - Prob. 16.107PCh. 16 - Prob. 16.108PCh. 16 - Prob. 16.109PCh. 16 - Prob. 16.110PCh. 16 - Prob. 16.111PCh. 16 - Prob. 16.112PCh. 16 - Prob. 16.113PCh. 16 - Prob. 16.114PCh. 16 - Prob. 16.115PCh. 16 - Prob. 16.116PCh. 16 - Prob. 16.117PCh. 16 - The growth of Pseudomonas bacteria is modeled as a...Ch. 16 - Prob. 16.119PCh. 16 - Prob. 16.120PCh. 16 - Prob. 16.121PCh. 16 - Prob. 16.122PCh. 16 - Prob. 16.123PCh. 16 - Prob. 16.124PCh. 16 - Human liver enzymes catalyze the degradation of...Ch. 16 - Prob. 16.126PCh. 16 - Prob. 16.127P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY