Concept explainers
Interpretation: The concentration of cobalt ion complex on dissolving the given moles of
Concept introduction: The complex ion formation constant is given by the formula,
To determine: The concentration of cobalt ion complex in the aqueous solution of ammonia and ethylenediamine.

Answer to Problem 16.71QP
Solution:
The concentration of cobalt ion complex in the aqueous solution of ammonia and ethylenediamine is
Explanation of Solution
Given
The number of moles of
The number of moles of ethylenediamine is
The number of moles of ammonia is
The total volume of the solution is
The molar concentration is calculated by the formula,
Substitute the value of number of moles of
Substitute the value of number of moles of
Substitute the value of number of moles of ethylenediamine and the volume of the solution in equation (1).
Cobalt nitrate on dissolving in the aqueous solution of ethylenediamine forma a complex ion with ethylenediamine as,
The complex ion formation constant,
The concentration of formation of
The ICE table for the formation of
The complex ion formation constant is given by the formula,
Substitute the value of
The value of
Therefore, the above equation becomes,
Therefore, the concentration of
Cobalt nitrate on dissolving in the aqueous solution of ammonia forma a complex ion with ammonia as,
The complex ion formation constant,
The concentration of formation of
The ICE table for the formation of
The complex ion formation constant is given by the formula,
Substitute the value of
The value of
Therefore, the above equation becomes,
Therefore, the concentration of
The total amount of cobalt ion complex is present as both
Therefore, the concentration of
Conclusion:
The concentration of in
Want to see more full solutions like this?
Chapter 16 Solutions
EBK CHEMISTRY: THE SCIENCE IN CONTEXT,
- b. ὋΗ CH3CH2OH H2SO4arrow_forwardFor the reaction A (g) → 3 B (g), Kp = 0.379 at 298 K. What is the value of ∆G for this reaction at 298 K when the partial pressures of A and B are 5.70 atm and 0.250 atm?arrow_forward14. Calculate the concentrations of Ag+, Ag(S2O3), and Ag(S2O3)23- in a solution prepared by mixing 150.0 mL of 1.00×10-3 M AgNO3 with 200.0 mL of 5.00 M Na2S2O3 Ag+ + S20 Ag(S203)¯ K₁ = 7.4 × 108 Ag(S203)¯ + S20¯ = Ag(S203) K₂ = 3.9 x 104arrow_forward
- ΗΝ, cyclohexanone pH 4-5 Draw Enamine I I CH3CH2Br THF, reflux H3O+ I Drawing Draw Iminium Ionarrow_forward:0: :0: Select to Add Arrows :0: (CH3)2NH :0: ■ Select to Add Arrows :0: :0: (CH3)2NH ■ Select to Add Arrowsarrow_forwardDraw the product of the following H action sequence. Ignore any inorganic byproducts formed. 1. (CH3CH2)2CuLi, THF 2. CH3Br Q Atoms, Bonds and Rings H Charges ㅁarrow_forward
- Please help me with this the problem is so confusingarrow_forward14 Question (1 point) Disiamylborane adds to a triple bond to give an alkenylborane. Upon oxidation with OH, H2O2, the alkenylborane will form an enol that tautomerizes to an aldehyde. In the first box below, draw the mechanism arrows for the reaction of disiamylborane with the alkyne, and in the last box draw the structure of the aldehyde. 4th attempt Feedback i > 3rd attempt OH, H2O2 i See Periodic Table See Hintarrow_forwardanswer with mechanisms and steps. handwritten please!arrow_forward
- Hello I need some help with Smartwork. For drawing structure B, I know the correct answer is CH₃B₂, but when I try to type it in, it keeps giving me CH₄BH₃ instead. Do you know how I should write it properly? Should I use a bond or something else?arrow_forwardTrue or false, chemistryarrow_forwardanswer thse questions with mechanisms and steps. handwritten please!arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





