Concept explainers
(i)
The nature of the propagation of the gap.
(i)
Answer to Problem 16.1QQ
Option (b) is correct.
Explanation of Solution
In a transverse wave the disturbance in the medium is perpendicular to the direction of propagation. In a longitudinal wave the disturbance in the medium is parallel to the direction of propagation.
In this case, the direction of propagation of the wave is towards the ticket window. When one person leaves, the gap is filled by the next person step forward to fill the gap it means the disturbance in the medium is also towards the ticket window.
As the disturbance in the medium and the direction of propagation both are in the same direction that is parallel to each other therefore, the propagation of gap is longitudinal.
Conclusion:
The disturbance in the medium and the direction of propagation are not perpendicular. Hence, Option (a) is not correct.
The disturbance in the medium and the direction of propagation are in the same direction. Hence, Option (b) is correct.
(ii)
The resultant pulse moves around the stadium and the pulse is (a) transverse or (b) longitudinal
(ii)
Answer to Problem 16.1QQ
Option (a) is correct.
Explanation of Solution
In a transverse wave the disturbance in the medium is perpendicular to the direction of propagation. In a longitudinal wave the disturbance in the medium is parallel to the direction of propagation.
In this case, the people stand up of sit down whereas the pulse moves either to the left or to the right. So, the disturbance in the medium and the direction of propagation of the pulse are perpendicular to each other.
The direction of propagation of the pulse and the disturbance in the medium are perpendicular to each other therefore, the pulse is transverse.
Conclusion:
The direction of propagation of the pulse and the disturbance in the medium are perpendicular. Hence, Option (a) is correct.
The direction of propagation of the pulse and the disturbance in the medium are not in the same direction. Hence, Option (b) is not correct.
Want to see more full solutions like this?
Chapter 16 Solutions
Bundle: Physics for Scientists and Engineers, Technology Update, 9th Loose-leaf Version + WebAssign Printed Access Card, Multi-Term
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Can you help me solve these questions please so i can see how to do itarrow_forwardHow can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning