Concept Used:
Write the expression for direction cosine in x-direction.
λx=xF−xNL ...... (I)
Here, coordinate of x at near end of the member is xF and coordinate of x at far end of the member is xN.
Write the expression for direction cosine in x-direction.
λy=yF−yNL ...... (II)
Here, coordinate of y at near end of the member is yF and coordinate of y at far end of the member is yN.
Write the global stiffness matrix for the member.
Here, cross-sectional area of the member is A, length of the member is L, modulus of elasticity is E and moment of inertia is I
Calculation:
The free body diagram of the frame is shown below.
Figure (1)
Consider the member-1.
Calculate direction cosine in x-direction.
Substitute 10 ft for xF, 0 ft for xN and 10 ft for L in Equation (I).
λx=10 ft−0 ft10 ft=1
Calculate direction cosine in y-direction.
Substitute 0 ft for yF, 0 ft for yN and 10 ft for L in Equation (II).
λy=0 ft−0 ft10 ft=0
The stiffness matrix for member-1 is shown below.
Substitute 1 for λx and 0 for λy in global stiffness matrix.
k1=[AEL00−AEL00012EIL36EIL20−12EIL36EIL206EIL24EIL0−6EIL22EIL−AEL00AEL00012EIL3−6EIL2012EIL3−6EIL206EIL22EIL0−6EIL24EIL] ...... (III)
Calculate the value of AEL in stiffness matrix.
Substitute 20 in2 for A, 29×103 ksi for E and 10 ft for L.
AEL=(20 in2)×(29×103 ksi)(10×12)in=4833.33 kips/in
Calculate the value of 6EIL2 in stiffness matrix.
Substitute 29×103 ksi for E, 650 in4 for I and 10 ft for L.
6EIL2=6×(29×103 ksi)×(650 in4)(10×12)2in2=7854.17 kips
Calculate the value of 12EIL3 in stiffness matrix.
Substitute 29×103 ksi for E, 650 in4 for I and 10 ft for L.
12EIL3=12×(29×103 ksi)×(650 in4)(10×12)3in3=130.9 kips/in
Calculate the value of 4EIL in stiffness matrix.
Substitute 29×103 ksi for E, 650 in4 for I and 10 ft for L.
4EIL=4×(29×103 ksi)×(650 in4)(10×12)in=628333.3 kip-in
Calculate the value of 2EIL in stiffness matrix.
Substitute 29×103 ksi for E, 650 in4 for I and 10 ft for L.
2EIL=2×(29×103 ksi)×(650 in4)(10×12)in=314166.67 kip-in
Substitute 4833.33 kips/in for AEL, 7854.17 kips for 6EIL2, 130.9 kips/in for 12EIL3, 628333.3 kip-in for 4EIL and 314166.67 kip-in for 2EIL in matrix (III). k1=[4833.3300−4833.33000130.97854.170130.97854.1707854.17628333.3628333.3−7854.17314166.67−4833.33004833.33000130.9−7854.170130.9−7854.1707854.17314166.67314166.67−7854.17628333.3] ...... (IV)
Consider the member-2.
Calculate direction cosine in x-direction.
Substitute 0 ft for xF, 0 ft for xN and 12 ft for L in Equation (I)
λx=0 ft−0 ft12 ft=0
Calculate direction cosine in y-direction.
Substitute 0 ft for yF, −12 ft for yN and 12 ft for L in Equation (II)
λy=0 ft−(−12 ft)12 ft=1
The stiffness matrix for member-1 is shown below.
Substitute 0 for λx and 1 for λy in global stiffness matrix.
k2=[12EIL306EIL2−12EIL306EIL20AEL00−AEL06EIL204EIL−6EIL202EIL−12EIL30−6EIL212EIL30−6EIL20−AEL00AEL06EIL202EIL−6EIL204EIL] ...... (V)
Calculate the value of AEL in stiffness matrix.
Substitute 20 in2 for A, 29×103 ksi for E and 12 ft for L.
AEL=(20 in2)×(29×103 ksi)(12×12)in=4027.78 kips/in
Calculate the value of 6EIL2 in stiffness matrix.
Substitute 29×103 ksi for E, 650 in4 for I and 12 ft for L.
6EIL2=6×(29×103 ksi)×(650 in4)(12×12)2in2=5454.28 kips
Calculate the value of 12EIL3 in stiffness matrix.
Substitute 29×103 ksi for E, 650 in4 for I and 12 ft for L.
12EIL3=12×(29×103 ksi)×(650 in4)(12×12)3in3=75.754 kips/in
Calculate the value of 4EIL in stiffness matrix.
Substitute 29×103 ksi for E, 650 in4 for I and 12 ft for L.
4EIL=4×(29×103 ksi)×(650 in4)(12×12)in=523611.11 kip-in
Calculate the value of 2EIL in stiffness matrix.
Substitute 29×103 ksi for E, 650 in4 for I and 12 ft for L.
2EIL=2×(29×103 ksi)×(650 in4)(12×12)in=261805.56 kip-in
Substitute 4027.78 kips/in for AEL, 5454.28 kips for 6EIL2, 75.754 kips/in for 12EIL3, 523611.11 kip-in for 4EIL and 261805.56 kip-in for 2EIL in matrix (III).
k2=[75.75405454.28−75.75405454.2804027.7800−4027.7805454.280523611.11−5454.280261805.56−75.7540−5454.2875.7540−5454.280−4027.78004027.7805454.280261805.56−5454.280523611.11] ...... (VI)
The final matrix of the frame by assembling matrices (III) and (IV) is shown below.
k=[4833.3300−4833.33000000130.97854.170−130.97854.1700007854.17628333.30−7854.17314166.67000−4833.33004909.0105454.28−75.75405454.280−130.9−7854.1704338.69−7854.1704207.78007854.17314166.675454.28−7854.1711519144.415454.280261805.56000−75.7540−5454.2875.7540−5454.280000−4207.78004207.7800005454.280261805.56−5454.280523611.11]
Conclusion:
The structure stiffness matrix for the frame is shown below.
k=[4833.3300−4833.33000000130.97854.170−130.97854.1700007854.17628333.30−7854.17314166.67000−4833.33004909.0105454.28−75.75405454.280−130.9−7854.1704338.69−7854.1704207.78007854.17314166.675454.28−7854.1711519144.415454.280261805.56000−75.7540−5454.2875.7540−5454.280000−4207.78004207.7800005454.280261805.56−5454.280523611.11]