STRUCTURAL ANAL.W/MOD MASTERING ACCE
STRUCTURAL ANAL.W/MOD MASTERING ACCE
18th Edition
ISBN: 9780134713649
Author: HIBBELER
Publisher: PEARSON
Question
Book Icon
Chapter 16, Problem 16.1P
To determine

The structure stiffness matrix for the frame.

Expert Solution & Answer
Check Mark

Answer to Problem 16.1P

The structure stiffness matrix for the frame is shown below.

   k=[4833.33004833.33000000130.97854.170130.97854.1700007854.17628333.307854.17314166.670004833.33004909.0105454.2875.75405454.280130.97854.1704338.697854.1704207.78007854.17314166.675454.287854.1711519144.415454.280261805.5600075.75405454.2875.75405454.2800004207.78004207.7800005454.280261805.565454.280523611.11]

Explanation of Solution

Concept Used:

Write the expression for direction cosine in x-direction.

λx=xFxNL          ...... (I)

Here, coordinate of x at near end of the member is xF and coordinate of x at far end of the member is xN.

Write the expression for direction cosine in x-direction.

λy=yFyNL          ...... (II)

Here, coordinate of y at near end of the member is yF and coordinate of y at far end of the member is yN.

Write the global stiffness matrix for the member.

Here, cross-sectional area of the member is A, length of the member is L, modulus of elasticity is E and moment of inertia is I

Calculation:

The free body diagram of the frame is shown below.

STRUCTURAL ANAL.W/MOD MASTERING ACCE, Chapter 16, Problem 16.1P

          Figure (1)

Consider the member-1.

Calculate direction cosine in x-direction.

Substitute 10 ft for xF, 0 ft for xN and 10 ft for L in Equation (I).

λx=10 ft0 ft10 ft=1

Calculate direction cosine in y-direction.

Substitute 0 ft for yF, 0 ft for yN and 10 ft for L in Equation (II).

λy=0 ft0 ft10 ft=0

The stiffness matrix for member-1 is shown below.

Substitute 1 for λx and 0 for λy in global stiffness matrix.

k1=[AEL00AEL00012EIL36EIL2012EIL36EIL206EIL24EIL06EIL22EILAEL00AEL00012EIL36EIL2012EIL36EIL206EIL22EIL06EIL24EIL]          ...... (III)

Calculate the value of AEL in stiffness matrix.

Substitute 20 in2 for A, 29×103 ksi for E and 10 ft for L.

AEL=(20 in2)×(29×103 ksi)(10×12)in=4833.33 kips/in

Calculate the value of 6EIL2 in stiffness matrix.

Substitute 29×103 ksi for E, 650 in4 for I and 10 ft for L.

6EIL2=6×(29×103 ksi)×(650 in4)(10×12)2in2=7854.17 kips

Calculate the value of 12EIL3 in stiffness matrix.

Substitute 29×103 ksi for E, 650 in4 for I and 10 ft for L.

12EIL3=12×(29×103 ksi)×(650 in4)(10×12)3in3=130.9 kips/in

Calculate the value of 4EIL in stiffness matrix.

Substitute 29×103 ksi for E, 650 in4 for I and 10 ft for L.

4EIL=4×(29×103 ksi)×(650 in4)(10×12)in=628333.3 kip-in

Calculate the value of 2EIL in stiffness matrix.

Substitute 29×103 ksi for E, 650 in4 for I and 10 ft for L.

2EIL=2×(29×103 ksi)×(650 in4)(10×12)in=314166.67 kip-in

Substitute 4833.33 kips/in for AEL, 7854.17 kips for 6EIL2, 130.9 kips/in for 12EIL3, 628333.3 kip-in for 4EIL and 314166.67 kip-in for 2EIL in matrix (III). k1=[4833.33004833.33000130.97854.170130.97854.1707854.17628333.3628333.37854.17314166.674833.33004833.33000130.97854.170130.97854.1707854.17314166.67314166.677854.17628333.3]          ...... (IV)

Consider the member-2.

Calculate direction cosine in x-direction.

Substitute 0 ft for xF, 0 ft for xN and 12 ft for L in Equation (I)

λx=0ft0ft12ft=0

Calculate direction cosine in y-direction.

Substitute 0 ft for yF, 12 ft for yN and 12 ft for L in Equation (II)

λy=0ft(12ft)12ft=1

The stiffness matrix for member-1 is shown below.

Substitute 0 for λx and 1 for λy in global stiffness matrix.

   k2=[12EIL306EIL212EIL306EIL20AEL00AEL06EIL204EIL6EIL202EIL12EIL306EIL212EIL306EIL20AEL00AEL06EIL202EIL6EIL204EIL]          ...... (V)

Calculate the value of AEL in stiffness matrix.

Substitute 20 in2 for A, 29×103 ksi for E and 12 ft for L.

AEL=(20 in2)×(29×103 ksi)(12×12)in=4027.78 kips/in

Calculate the value of 6EIL2 in stiffness matrix.

Substitute 29×103 ksi for E, 650 in4 for I and 12 ft for L.

6EIL2=6×(29×103 ksi)×(650 in4)(12×12)2in2=5454.28 kips

Calculate the value of 12EIL3 in stiffness matrix.

Substitute 29×103 ksi for E, 650 in4 for I and 12 ft for L.

12EIL3=12×(29×103 ksi)×(650 in4)(12×12)3in3=75.754 kips/in

Calculate the value of 4EIL in stiffness matrix.

Substitute 29×103 ksi for E, 650 in4 for I and 12 ft for L.

4EIL=4×(29×103 ksi)×(650 in4)(12×12)in=523611.11 kip-in

Calculate the value of 2EIL in stiffness matrix.

Substitute 29×103 ksi for E, 650 in4 for I and 12 ft for L.

2EIL=2×(29×103 ksi)×(650 in4)(12×12)in=261805.56 kip-in

Substitute 4027.78 kips/in for AEL, 5454.28 kips for 6EIL2, 75.754 kips/in for 12EIL3, 523611.11 kip-in for 4EIL and 261805.56 kip-in for 2EIL in matrix (III).

   k2=[75.75405454.2875.75405454.2804027.78004027.7805454.280523611.115454.280261805.5675.75405454.2875.75405454.2804027.78004027.7805454.280261805.565454.280523611.11]          ...... (VI)

The final matrix of the frame by assembling matrices (III) and (IV) is shown below.

   k=[4833.33004833.33000000130.97854.170130.97854.1700007854.17628333.307854.17314166.670004833.33004909.0105454.2875.75405454.280130.97854.1704338.697854.1704207.78007854.17314166.675454.287854.1711519144.415454.280261805.5600075.75405454.2875.75405454.2800004207.78004207.7800005454.280261805.565454.280523611.11]

Conclusion:

The structure stiffness matrix for the frame is shown below.

   k=[4833.33004833.33000000130.97854.170130.97854.1700007854.17628333.307854.17314166.670004833.33004909.0105454.2875.75405454.280130.97854.1704338.697854.1704207.78007854.17314166.675454.287854.1711519144.415454.280261805.5600075.75405454.2875.75405454.2800004207.78004207.7800005454.280261805.565454.280523611.11]

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
P10.7 WP For the simply supported steel beam [E = 200 GPa; I = 129 × 106 mm²] shown in Figure P10.7, use the double-integration method to determine the deflection at B. Assume that L = 4 m, P = 60 kN, and w = 40 kN/m. A B FIGURE P10.7 W
When calculating the minimum force P required to prevent motion of the wheel....What is the angle beta to be used in the equation for belt frictionwhen working with this system?Which tension would be T2?
4.5m 4.5m 4.5m 20 4m A- Intermediate flat plate floor, story height=2.75 m, t=190 mm, f'c=20 MPa for slabs and f'c=35 MPa for columns. All columns are 400×400mm. Find all DF for the interior equivalent frame shown. 6m 6m
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,
Text book image
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning