Connect for Chemistry
13th Edition
ISBN: 9781260161854
Author: Raymond Chang, Jason Overby
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 16, Problem 16.133QP
(a) Referring to Figure 16.6, describe how you would determine the pKb of the base. (b) Derive an analogous Henderson-Hasselbalch equation relating pOH to pKb of a weak base B and its conjugate acid HB+. Sketch a titration curve showing the variation of the pOH of the base solution versus the volume of a strong acid added from a buret. Describe how you would determine the pKb from this curve. (Hint: pKb = −log Kb.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For the titration of 75 mL of 0.10 M acetic acid with 0.10 M NaOH, calculate the pH.
For acetic acid, HC2H302, Ka = 1.8 x 105.
(a) before the addition of any NaOH solution.
Use correct number of significant digits;
(b) after 25 mL of the base has been added.
Use correct number of significant digits;
(c) after half of the HC2H302 has been neutralized.
Use correct number of significant digits;
(d) at the equivalence point.
Use correct number of significant digits;
For the titration of 50. mL of 0.10 M ammonia with 0.10 M HCI, calculate the pH.
For ammonia, NH3, Kp = 1.8 x 10-5.
(a) Before the addition of any HCl solution.
pH =
Use correct number of significant digits;
(b) After 20. mL of the acid has been added.
pH =
Use correct number of significant digits;
(c) After half of the NH3 has been neutralized.
pH
Use correct number of significant digits;
(d) At the equivalence point.
pH
Use correct number of significant digits;
a
An analytical chemist is titrating 128.3 mL of a 0.7000M solution of cyanic acid (HCNO) with a 1.100M solution of KOH. The p K of cyanic acid is 3.46.
Calculate the pH of the acid solution after the chemist has added 92.48 mL of the KOH solution to it.
Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of KOH solution added.
Round your answer to 2 decimal places.
pH =
X
Ś
Chapter 16 Solutions
Connect for Chemistry
Ch. 16.2 - What is the pH of a solution containing 0.30 M...Ch. 16.2 - Prob. 1RCFCh. 16.2 - What is the pH of a solution containing 0.25 M...Ch. 16.3 - Which of the following couples are buffer systems:...Ch. 16.3 - Calculate the pH of the 0.30 M NH3/0.36 M NH4Cl...Ch. 16.3 - How would you prepare a liter of carbonate buffer...Ch. 16.3 - Calculate the pH of the 0.40 M HF/0.48 M KF buffer...Ch. 16.3 - The diagrams (a)(d) represent solutions containing...Ch. 16.4 - Exactly 100 mL of 0.10 M nitrous acid (HNO2) are...Ch. 16.4 - Calculate the pH at the equivalence point in the...
Ch. 16.4 - For which of the following titrations will the pH...Ch. 16.4 - Calculate the pH at the equivalence point in the...Ch. 16.4 - calculate the pH in the titration of 50.0 mL of...Ch. 16.5 - Referring to Table 16.1, specify which indicator...Ch. 16.5 - Under what conditions will the end point of an...Ch. 16.6 - The solubility of lead chromate (PbCrO4) is 4.5 ...Ch. 16.6 - Calculate the solubility of silver chloride (AgCl)...Ch. 16.6 - Prob. 10PECh. 16.6 - Prob. 1RCFCh. 16.6 - Will a precipitate form when 50.0 mL of 0.0100 M...Ch. 16.6 - The diagrams (a)(d) represent solutions of AgCl,...Ch. 16.7 - The solubility products of AgCl and Ag3PO4 are 1.6...Ch. 16.7 - AgNO3 is slowly added to a solution that contains...Ch. 16.8 - Prob. 12PECh. 16.8 - Calculate the molar solubility of CaF2 in 0.0015 M...Ch. 16.9 - Is the solubility of the following compounds...Ch. 16.9 - Calculate whether or not a precipitate will form...Ch. 16.9 - Prob. 1RCFCh. 16.10 - Prob. 15PECh. 16.10 - Calculate the molar solubility of AgBr in a 1.0 M...Ch. 16.10 - Prob. 1RCFCh. 16.11 - An aqueous solution contains both Zn2+ and Pb2+...Ch. 16 - Use Le Chteliers principle to explain how the...Ch. 16 - Describe the effect on pH (increase, decrease, or...Ch. 16 - The pKas of two monoprotic acids HA and HB are 5.9...Ch. 16 - Determine the pH of (a) a 0.40 M CH3COOH solution,...Ch. 16 - Determine the pH of (a) a 0.20 M NH3 solution, (b)...Ch. 16 - What is a buffer solution? What constitutes a...Ch. 16 - Which of the following has the greatest buffer...Ch. 16 - Which of the following solutions can act as a...Ch. 16 - Which of the following solutions can act as a...Ch. 16 - Calculate the pH of the buffer system made up of...Ch. 16 - Calculate the pH of the following two buffer...Ch. 16 - The pH of a bicarbonate-carbonic acid buffer is...Ch. 16 - What is the pH of the buffer 0.10 M Na2HPO4/0.15 M...Ch. 16 - The pH of a sodium acetateacetic acid buffer is...Ch. 16 - The pH of blood plasma is 7.40. Assuming the...Ch. 16 - Calculate the pH of the 0.20 M NH3/0.20 M NH4Cl...Ch. 16 - Calculate the pH of 1.00 L of the buffer 1.00 M...Ch. 16 - A student is asked to prepare a buffer solution at...Ch. 16 - The diagrams (a)(d) contain one or more of the...Ch. 16 - The diagrams shown here represent solutions...Ch. 16 - How much NaOH (in moles) must be added to 1 L of a...Ch. 16 - How much HCl (in moles) must be added to 1 L of a...Ch. 16 - Briefly describe what happens in an acid-base...Ch. 16 - Sketch titration curves for the following...Ch. 16 - A 0.2688-g sample of a monoprotic acid neutralizes...Ch. 16 - A 5.00-g quantity of a diprotic acid was dissolved...Ch. 16 - In a titration experiment, 12.5 mL of 0.500 M...Ch. 16 - In a titration experiment, 20.4 mL of 0.883 M...Ch. 16 - A 0.1276-g sample of an unknown monoprotic acid...Ch. 16 - A solution is made by mixing 5.00 102 mL of 0.167...Ch. 16 - Calculate the pH at the equivalence point for the...Ch. 16 - Calculate the pH at the equivalence point for the...Ch. 16 - A 25.0-mL solution of 0.100 M CH3COOH is titrated...Ch. 16 - A 10.0-mL solution of 0.300 M NH3 is titrated with...Ch. 16 - The diagrams shown here represent solutions at...Ch. 16 - Prob. 16.38QPCh. 16 - A 0.054 M HNO2 solution is titrated with a KOH...Ch. 16 - A student titrates an unknown monoprotic acid with...Ch. 16 - Explain how an acid-base indicator works in a...Ch. 16 - The amount of indicator used in an acid-base...Ch. 16 - Referring to Table 16.1, specify which indicator...Ch. 16 - A student carried out an acid-base titration by...Ch. 16 - The ionization constant Ka of an indicator HIn is...Ch. 16 - Use BaSO4 to distinguish between solubility, molar...Ch. 16 - Why do we usually not quote the Ksp values for...Ch. 16 - Write balanced equations and solubility product...Ch. 16 - Write the solubility product expression for the...Ch. 16 - How can we predict whether a precipitate will form...Ch. 16 - Silver chloride has a larger Ksp than silver...Ch. 16 - From the solubility data given, calculate the...Ch. 16 - The molar solubility of MnCO3 is 4.2 106 M. What...Ch. 16 - The solubility of an ionic compound MX (molar mass...Ch. 16 - The solubility of an ionic compound M2X3 (molar...Ch. 16 - Using data from Table 16.2, calculate the molar...Ch. 16 - Prob. 16.59QPCh. 16 - The pH of a saturated solution of a metal...Ch. 16 - If 20.0 mL of 0.10 M Ba(NO3)2 are added to 50.0 mL...Ch. 16 - A volume of 75 mL of 0.060 M NaF is mixed with 25...Ch. 16 - Solid NaI is slowly added to a solution that is...Ch. 16 - Find the approximate pH range suitable for the...Ch. 16 - How does the common ion effect influence...Ch. 16 - Prob. 16.66QPCh. 16 - How many grams of CaCO3 will dissolve in 3.0 102...Ch. 16 - The solubility product of PbBr2 is 8.9 106....Ch. 16 - Calculate the molar solubility of AgCl in a 1.00-L...Ch. 16 - Calculate the molar solubility of BaSO4 (a) in...Ch. 16 - Prob. 16.71QPCh. 16 - Which of the following will be more soluble in...Ch. 16 - Prob. 16.73QPCh. 16 - Calculate the molar solubility of Fe(OH)2 in a...Ch. 16 - The solubility product of Mg(OH)2 is 1.2 1011....Ch. 16 - Calculate whether or not a precipitate will form...Ch. 16 - If 2.50 g of CuSO4 are dissolved in 9.0 102 mL of...Ch. 16 - Calculate the concentrations of Cd2+, Cd(CN3)42,...Ch. 16 - If NaOH is added to 0.010 M Al3+, which will be...Ch. 16 - Calculate the molar solubility of AgI in a 1.0 M...Ch. 16 - Both Ag+ and Zn2+ form complex ions with NH3....Ch. 16 - Explain, with balanced ionic equations, why (a)...Ch. 16 - Outline the general procedure of qualitative...Ch. 16 - Give two examples of metal ions in each group (1...Ch. 16 - In a group 1 analysis, a student obtained a...Ch. 16 - In a group 1 analysis, a student adds HCl acid to...Ch. 16 - Both KCl and NH4Cl are white solids. Suggest one...Ch. 16 - Describe a simple test that would enable you to...Ch. 16 - To act as an effective buffer, the concentrations...Ch. 16 - The pKa of the indicator methyl orange is 3.46....Ch. 16 - The iodide impurity in a 4.50-g sample of a metal...Ch. 16 - A sodium acetate-acetic acid buffer solution was...Ch. 16 - Prob. 16.95QPCh. 16 - A 200-mL volume of NaOH solution was added to 400...Ch. 16 - The pKa of butyric acid (HBut) is 4.7. Calculate...Ch. 16 - A solution is made by mixing 5.00 102 mL of 0.167...Ch. 16 - Cd(OH)2 is an insoluble compound. It dissolves in...Ch. 16 - A student mixes 50.0 mL of 1.00 M Ba(OH)2 with...Ch. 16 - For which of the following reactions is the...Ch. 16 - A 2.0-L kettle contains 116 g of boiler scale...Ch. 16 - Equal volumes of 0.12 M AgNO3 and 0.14 M ZnCl2...Ch. 16 - Prob. 16.104QPCh. 16 - Prob. 16.105QPCh. 16 - A volume of 25.0 mL of 0.100 M HCl is titrated...Ch. 16 - The molar solubility of Pb(IO3)2 in a 0.10 M NaIO3...Ch. 16 - When a KI solution was added to a solution of...Ch. 16 - Barium is a toxic substance that can seriously...Ch. 16 - Prob. 16.110QPCh. 16 - Solid NaBr is slowly added to a solution that is...Ch. 16 - Cacodylic acid is (CH3)2AsO2H. Its ionization...Ch. 16 - Radiochemical techniques are useful in estimating...Ch. 16 - The molar mass of a certain metal carbonate, MCO3,...Ch. 16 - Acid-base reactions usually go to completion....Ch. 16 - Calculate x, which is the number of molecules of...Ch. 16 - Describe how you would prepare a 1-L 0.20 M...Ch. 16 - Prob. 16.118QPCh. 16 - Prob. 16.119QPCh. 16 - What reagents would you employ to separate the...Ch. 16 - Look up the Ksp values for BaSO4 and SrSO4 in...Ch. 16 - In principle, amphoteric oxides, such as Al2O3 and...Ch. 16 - Prob. 16.123QPCh. 16 - When lemon juice is squirted into tea, the color...Ch. 16 - How many milliliters of 1.0 M NaOH must be added...Ch. 16 - The maximum allowable concentration of Pb2+ ions...Ch. 16 - Which of the following solutions has the highest...Ch. 16 - Prob. 16.129QPCh. 16 - Water containing Ca2+ and Mg2+ ions is called hard...Ch. 16 - Prob. 16.131QPCh. 16 - Prob. 16.132QPCh. 16 - (a) Referring to Figure 16.6, describe how you...Ch. 16 - Prob. 16.135QPCh. 16 - One way to distinguish a buffer solution with an...Ch. 16 - Prob. 16.137QPCh. 16 - A sample of 0.96 L of HCl at 372 mmHg and 22C is...Ch. 16 - (a) Assuming complete dissociation and no ion-pair...Ch. 16 - Calculate the maximum mass (in grams) of each of...Ch. 16 - A 1.0-L saturated silver carbonate solution at 5C...Ch. 16 - The two curves shown represent the titration of...Ch. 16 - Prob. 16.143QPCh. 16 - A 100-mL 0.100 M CuSO4 solution is mixed with a...Ch. 16 - The titration curve shown represents the titration...Ch. 16 - The titration curve shown represents the titration...Ch. 16 - Use appropriate equations to account for the...Ch. 16 - Prob. 16.148QPCh. 16 - Aspirin is a weak acid with pKa = 3.5. What is the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Which of the acid-base indicators discussed in this chapter would be suitable for the titration of (a) HNO3 with KOH. (b) KOH with acetic acid. (c) HCl with NH3. (d) KOH with HNO2. Explain your answers.arrow_forwardNear the equivalence point in the titration of a strong acid with a strong base, one drop of base can cause the pH of the solution in the flask to change from 6.0 to 8.0. What is the relationship between the hydrogen ion concentrations at the two pH values? (A) The [H+] would be 100 times higher at pH 8.0 than 6.0. (B) The [H+] would be 200 times higher at pH 6.0 than 8.0. (C) The [H+] would be 2 times higher at pH 6.0 than 8.0. (D) The [H+] would be 2 times higher at pH 8.0 than 6.0. (E) The [H+] would be 100 times higher at pH 6.0 than 8.0.arrow_forwarda An analytical chemist is titrating 91.3 mL of a 0.7000M solution of butanoic acid (HC₂H,CO₂) with a 0.3700M solution of NaOH. The pK of butanoic acid is 4.82. Calculate the pH of the acid solution after the chemist has added 197. mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. pH = X Śarrow_forward
- A chemist titrates 180.0 mL of a 0.8675 M trimethylamine ((CH,) N) solution with 0.4585 M HCl solution at 25 °C. Calculate the pH at equivalence. The p K, of trimethylamine is 4.19. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of HCl solution added. pH =arrow_forwarda An analytical chemist is titrating 86.1 mL of a 1.100M solution of hydrazoic acid (HN3) with a 0.7600M solution of KOH. The p K of hydrazoic acid is 4.72. Calculate the pH of the acid solution after the chemist has added 74.4 mL of the KOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of KOH solution added. Round your answer to 2 decimal places.arrow_forwardCalculating the pH of a weak acid titrated with a strong base An analytical chemist is titrating 109.4 mL of a 0.7700M solution of hydrazoic acid (HN3) with a 0.5800M solution of NaOH. The pK of hydrazoic acid is 4.72. Calculate the pH of the acid solution after the chemist has added 163.3 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. pH ☑ ? 00. 18 Ararrow_forward
- When titrating 15 mL of 0.000489 mol/L hydrazoic acid (HN3) with 0.000517 mol/L KOH:(a) What is the pH of the solution before starting the titration? Do your calculations with the quadratic equation.b) What volume of KOH (in mL) is needed to reach the equivalence point, and what is the pH of the solution after the addition of 11.5 mL of KOH solution?c) What is the pH of the solution at the equivalence point and the pH of the solution after the addition of 16 mL of the KOH solution?arrow_forwardWhen a 29.6 mL sample of a 0.484 M aqueous hydrofluoric acid solution is titrated with a 0.499 M aqueous sodium hydroxide solution, (1) What is the pH at the midpoint in the titration? (2) What is the pH at the equivalence point of the titration? (3) What is the pH after 43.1 mL of sodium hydroxide have been added?arrow_forwardA chemist titrates 170.0 mL of a 0.6472 M cyanic acid (HCNO) solution with 0.6584M KOH solution at 25 °C, Calculate the pH at equivalence. The p K of cyanic acid is 3.46. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of KOH solution added. pH = |arrow_forward
- Calculate the pH for each of the cases in the titration of 35.0 mL of 0.130 M KOH(aq) with 0.130 M HBr(aq). Note: Enter your answers with two decimal places. before addition of any HBr: 13.11 after addition of 13.5 mL HBr: after addition of 22.5 mL HBr: after addition of 35.0 mL HBr: after addition of 40.5 mL HBr: after addition of 50.0 mL HBr:arrow_forwardCalculate the pH of a bicarbonate/carbonate buffer in which the concentration of sodium bicarbonate (NaHCO3) is always 0.31 M, but the concentration of sodium carbonate (Na2CO3) corresponds to the following values: 0.83 M. (Ka for HCO3− is 5.6 × 10−11.) Report your answer to four significant figures.arrow_forwardAn analytical chemist is titrating 127.5 mL of a 0.5600 M solution of cyanic acid (HCNO) with a 0.4600 M solution of NaOH. The p K of cyanic acid is 3.46. Calculate the pH of the acid solution after the chemist has added 74.40 mL of the NaOH a solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. pH = | ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY