(a)
Interpretation:
Average rate for each trial has to be determined.
Concept introduction:
Relative rates and stoichiometry: During a
(a)
Explanation of Solution
The reaction given is:
The average rate of the chemical reaction:
Molarity of
Hence, the average rates:
For experiment (1):
For experiment (2):
For experiment (3):
Therefore, the average rate for each trial was calculated as shown above.
(b)
Interpretation:
Reaction order with respect to each reactant has to be found.
Concept introduction:
Rate law or rate equation: The relationship between the reactant concentrations and reaction rate is expressed by an equation.
Order of a reaction: The order of a reaction with respect to a particular reactant is the exponent of its concentration term in the rate law expression, and the overall reaction order is the sum of the exponents on all concentration terms.
Rate constant, k: It is a proportionality constant that relates rate and concentration at a given temperature.
(b)
Explanation of Solution
Molarity of
Molarity of
Molarity of
Molarity of
Rate law equation:
Let’s find the order of reactant
The order with respect to
Let’s find the order of reactant
The order with respect to
In order to figure out the reaction equation the order of the reactants needed, which is calculated by comparing any two experiments where the concentration of two reactants are constant and another varies, and in vice-versa. Hence, Rate equation is
The respective order of reactant
The respective order of reactant
Hence, the reaction rate becomes,
(c)
Interpretation:
Rate constant of the reaction has to be calculated.
Concept introduction:
Rate law or rate equation: The relationship between the reactant concentrations and reaction rate is expressed by an equation.
Order of a reaction: The order of a reaction with respect to a particular reactant is the exponent of its concentration term in the rate law expression, and the overall reaction order is the sum of the exponents on all concentration terms.
Rate constant, k: It is a proportionality constant that relates rate and concentration at a given temperature.
(c)
Explanation of Solution
Considering the experiment (1),
Given rate law:
Calculating the rate constant of reaction as follows,
Therefore, the rate constant of reaction at given concentration is
(d)
Interpretation:
Rate law of the overall reaction has to be calculated.
Concept introduction:
Rate law or rate equation: The relationship between the reactant concentrations and reaction rate is expressed by an equation.
Order of a reaction: The order of a reaction with respect to a particular reactant is the exponent of its concentration term in the rate law expression, and the overall reaction order is the sum of the exponents on all concentration terms.
Rate constant, k: It is a proportionality constant that relates rate and concentration at a given temperature.
(d)
Explanation of Solution
The overall reaction law is obtained by substituting the rate constant value as follows,
The rate constant of reaction at given concentration is
Want to see more full solutions like this?
Chapter 16 Solutions
Loose Leaf for Chemistry: The Molecular Nature of Matter and Change
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY