Chemistry Smartwork Access Code Fourth Edition
Chemistry Smartwork Access Code Fourth Edition
4th Edition
ISBN: 9780393521368
Author: Gilbert
Publisher: NORTON
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 16, Problem 16.110QP

(a)

Interpretation Introduction

To determine: An equation for the reaction that occurs when sodium acetate is added to HCl(aq).

Interpretation: An equation for the reaction that occurs when sodium acetate is added to HCl(aq) is to be stated.

Concept introduction: HCl is a strong acid and it will dissociate completely into H+ and Cl whereas CH3COONa is a salt form of weak acid (CH3COOH) which is a strong base. The products formed are acetic acid and sodium chloride.

(a)

Expert Solution
Check Mark

Answer to Problem 16.110QP

An equation for the reaction that occurs when sodium acetate is added to HCl(aq) is,

CH3COONa+HClCH3COOH+NaCl

Explanation of Solution

Sodium acetate is a salt of acetic acid which is considered as a weak acid.

HCl being a strong acid displace it from its salt leads to the formation of sodium chloride and acetic acid. The equation is shown below,

CH3COONa+HClCH3COOH+NaCl

The product formed is a mixture of common salt and vinegar (acetic acid).

(b)

Interpretation Introduction

To determine: The pH of the resulting buffer if 10.0g of CH3COONa is added to 275mL of 0.225MHCl.

Interpretation: The pH of the resulting buffer if 10.0g of CH3COONa is added to 275mL of 0.225MHCl is to be calculated.

Concept introduction: The pH of the solution is calculated by Henderson-Hasselbalch equation,

pH=pKa+log([Salt][Acid])

(b)

Expert Solution
Check Mark

Answer to Problem 16.110QP

The pH of the buffer is 4.75_.

Explanation of Solution

Given

The given weight of CH3COONa is 10.0g.

The volume of HCl is 275mL.

The molarity of HCl is 0.225M.

The molar mass of CH3COONa is 82g/mol.

The number of moles is calculated by the formula,

Numberofmoles=GivenmassMolarmass

Substitute the values of given mass and molar mass of CH3COONa.

Numberofmoles=GivenmassMolarmass=10g82g/mol=0.122

The molarity of the solution is calculated by the formula,

Molarity=Amountofsolute(inmoles)VolumeMoles=Molarity×Volume

Substitute the values of molarity and volume.

NumberofmolesofHCl=Molarity×Volume=0.225M×275×103L=0.062mol

Consider the reaction between sodium acetate and HCl,

CH3COONa+HClCH3COOH+NaCl

molesofCH3COONareacted=molesofHCladded=0.062molesofCH3COOHformed=molesofHCladded=0.062

So,

MolesofCH3COOH=0.062

MolesofCH3COONa=Initialmolesreactedmoles=0.122-0.062=0.06

The pH of the solution is calculated by Henderson-Hasselbalch equation,

pH=pKa+log([Salt][Acid])

Substitute the values in the above equation.

pH=pKa+log([Salt][Acid])pH=pKa+log[CH3COONa][CH3COOH]pH=4.76+log[0.060][0.062]pH=4.75_

So, the pH of the buffer is 4.75_.

(c)

Interpretation Introduction

To determine: The pH of the solution in part (b) after the addition of 1.26g of solid NaOH.

Interpretation: The pH of the solution in part (b) after the addition of 1.26g of solid NaOH is to be calculated.

Concept introduction: The pH of the solution is calculated by Henderson-Hasselbalch equation,

pH=pKa+log([Salt][Acid])

(c)

Expert Solution
Check Mark

Answer to Problem 16.110QP

The pH of the solution in part (b) after the addition of 1.26g of solid NaOH is 5.23_.

Explanation of Solution

The given weight of NaOH is 1.26g.

The molecular mass of NaOH is 40g/mol.

The number of moles is calculated by the formula,

Numberofmoles=GivenmassMolarmass

Substitute the values of given mass and molar mass of CH3COONa.

Numberofmoles=GivenmassMolarmass=1.26g40g/mol=0.0315mol

The reaction between CH3COOH and NaOH is,

CH3COOH+NaOHCH3COONa+H2O

MolesofCH3COOHreacted=MolesofNaOHadded=0.0315MolesofCH3COONaformed=MolesofNaOHadded=0.0315

Finally,

molesofCH3COOH=initialmoles-reactedmoles=0.062-0.0315=0.0305

molesofCH3COONa=initialmoles+molesformed=0.060+0.0315=0.0915

The pH of the solution is calculated by Henderson-Hasselbalch equation,

pH=pKa+log([Salt][Acid])

Substitute the values in the above equation.

pH=pKa+log([Salt][Acid])pH=pKa+log[CH3COONa][CH3COOH]=4.76+log[0.0915][0.0305]=5.23

Conclusion
  1. a. CH3COONa+HClCH3COOH+NaCl
  2. b. The pH of the buffer is 4.75.
  3. c. The pH of the solution in part (b) after the addition of 1.26g of solid NaOH is 5.23.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Predict the organic products that form in the reaction below: H. H+ + OH H+ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Explanation Check Click and drag to start drawing a structure. G X C © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Access +
111 Carbonyl Chem Choosing reagants for a Wittig reaction What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 3 1 2 2. n-BuLi • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure. × ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use
A student proposes the transformation below in one step of an organic synthesis. There may be one or more reactants missing from the left-hand side, but there are no products missing from the right-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. . If the student's transformation is possible, then complete the reaction by adding any missing reactants to the left-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + T X O O лет-ле HO OH HO OH This transformation can't be done in one step.

Chapter 16 Solutions

Chemistry Smartwork Access Code Fourth Edition

Ch. 16.8 - Prob. 11PECh. 16.8 - Prob. 12PECh. 16.8 - Prob. 13PECh. 16.10 - Prob. 17PECh. 16.10 - Prob. 18PECh. 16 - Prob. 16.1VPCh. 16 - Prob. 16.2VPCh. 16 - Prob. 16.3VPCh. 16 - Prob. 16.4VPCh. 16 - Prob. 16.5VPCh. 16 - Prob. 16.6VPCh. 16 - Prob. 16.7VPCh. 16 - Prob. 16.8VPCh. 16 - Prob. 16.9VPCh. 16 - Prob. 16.10VPCh. 16 - Prob. 16.11QPCh. 16 - Prob. 16.12QPCh. 16 - Prob. 16.13QPCh. 16 - Prob. 16.14QPCh. 16 - Prob. 16.15QPCh. 16 - Prob. 16.16QPCh. 16 - Prob. 16.17QPCh. 16 - Prob. 16.18QPCh. 16 - Prob. 16.19QPCh. 16 - Prob. 16.20QPCh. 16 - Prob. 16.21QPCh. 16 - Prob. 16.22QPCh. 16 - Prob. 16.23QPCh. 16 - Prob. 16.24QPCh. 16 - Prob. 16.25QPCh. 16 - Prob. 16.26QPCh. 16 - Prob. 16.27QPCh. 16 - Prob. 16.28QPCh. 16 - Prob. 16.29QPCh. 16 - Prob. 16.30QPCh. 16 - Prob. 16.31QPCh. 16 - Prob. 16.32QPCh. 16 - Prob. 16.33QPCh. 16 - Prob. 16.34QPCh. 16 - Prob. 16.35QPCh. 16 - Prob. 16.36QPCh. 16 - Prob. 16.37QPCh. 16 - Prob. 16.38QPCh. 16 - Prob. 16.39QPCh. 16 - Prob. 16.40QPCh. 16 - Prob. 16.42QPCh. 16 - Prob. 16.43QPCh. 16 - Prob. 16.44QPCh. 16 - Prob. 16.45QPCh. 16 - Prob. 16.46QPCh. 16 - Prob. 16.47QPCh. 16 - Prob. 16.48QPCh. 16 - Prob. 16.49QPCh. 16 - Prob. 16.50QPCh. 16 - Prob. 16.51QPCh. 16 - Prob. 16.52QPCh. 16 - Prob. 16.53QPCh. 16 - Prob. 16.54QPCh. 16 - Prob. 16.55QPCh. 16 - Prob. 16.56QPCh. 16 - Prob. 16.57QPCh. 16 - Prob. 16.58QPCh. 16 - Prob. 16.59QPCh. 16 - Prob. 16.60QPCh. 16 - Prob. 16.61QPCh. 16 - Prob. 16.62QPCh. 16 - Prob. 16.63QPCh. 16 - Prob. 16.64QPCh. 16 - Prob. 16.65QPCh. 16 - Prob. 16.66QPCh. 16 - Prob. 16.67QPCh. 16 - Prob. 16.68QPCh. 16 - Prob. 16.69QPCh. 16 - Prob. 16.70QPCh. 16 - Prob. 16.71QPCh. 16 - Prob. 16.72QPCh. 16 - Prob. 16.73QPCh. 16 - Prob. 16.74QPCh. 16 - Prob. 16.75QPCh. 16 - Prob. 16.76QPCh. 16 - Prob. 16.77QPCh. 16 - Prob. 16.78QPCh. 16 - Prob. 16.79QPCh. 16 - Prob. 16.80QPCh. 16 - Prob. 16.81QPCh. 16 - Prob. 16.82QPCh. 16 - Prob. 16.83QPCh. 16 - Prob. 16.84QPCh. 16 - Prob. 16.85QPCh. 16 - Prob. 16.86QPCh. 16 - Prob. 16.87QPCh. 16 - Prob. 16.88QPCh. 16 - Prob. 16.89QPCh. 16 - Prob. 16.90QPCh. 16 - Prob. 16.91QPCh. 16 - Prob. 16.92QPCh. 16 - Prob. 16.93QPCh. 16 - Prob. 16.94QPCh. 16 - Prob. 16.95QPCh. 16 - Prob. 16.96QPCh. 16 - Prob. 16.97QPCh. 16 - Prob. 16.98QPCh. 16 - Prob. 16.99QPCh. 16 - Prob. 16.100QPCh. 16 - Prob. 16.101QPCh. 16 - Prob. 16.102QPCh. 16 - Prob. 16.103QPCh. 16 - Prob. 16.104QPCh. 16 - Prob. 16.105QPCh. 16 - Prob. 16.106QPCh. 16 - Prob. 16.107QPCh. 16 - Prob. 16.108QPCh. 16 - Prob. 16.109QPCh. 16 - Prob. 16.110QPCh. 16 - Prob. 16.111QPCh. 16 - Prob. 16.112QPCh. 16 - Prob. 16.113QPCh. 16 - Prob. 16.114QPCh. 16 - Prob. 16.115QPCh. 16 - Prob. 16.116QPCh. 16 - Prob. 16.117QPCh. 16 - Prob. 16.118QPCh. 16 - Prob. 16.119QPCh. 16 - Prob. 16.120QPCh. 16 - Prob. 16.121QPCh. 16 - Prob. 16.122QPCh. 16 - Prob. 16.123QPCh. 16 - Prob. 16.124QPCh. 16 - Prob. 16.125QPCh. 16 - Prob. 16.126QPCh. 16 - Prob. 16.127QPCh. 16 - Prob. 16.128QPCh. 16 - Prob. 16.129QPCh. 16 - Prob. 16.130QPCh. 16 - Prob. 16.131QPCh. 16 - Prob. 16.132QPCh. 16 - Prob. 16.133QPCh. 16 - Prob. 16.134QPCh. 16 - Prob. 16.135QPCh. 16 - Prob. 16.136QPCh. 16 - Prob. 16.137QPCh. 16 - Prob. 16.138QPCh. 16 - Prob. 16.139QPCh. 16 - Prob. 16.140QPCh. 16 - Prob. 16.141QPCh. 16 - Prob. 16.142QPCh. 16 - Prob. 16.143QPCh. 16 - Prob. 16.144QPCh. 16 - Prob. 16.145QPCh. 16 - Prob. 16.146QPCh. 16 - Prob. 16.147QPCh. 16 - Prob. 16.148QPCh. 16 - Prob. 16.149QPCh. 16 - Prob. 16.150QPCh. 16 - Prob. 16.151APCh. 16 - Prob. 16.152APCh. 16 - Prob. 16.153APCh. 16 - Prob. 16.154APCh. 16 - Prob. 16.155APCh. 16 - Prob. 16.156APCh. 16 - Prob. 16.157APCh. 16 - Prob. 16.158APCh. 16 - Prob. 16.159APCh. 16 - Prob. 16.160APCh. 16 - Prob. 16.161APCh. 16 - Prob. 16.162APCh. 16 - Prob. 16.163APCh. 16 - Prob. 16.164APCh. 16 - Prob. 16.165APCh. 16 - Prob. 16.166APCh. 16 - Prob. 16.167APCh. 16 - Prob. 16.168APCh. 16 - Prob. 16.169APCh. 16 - Prob. 16.170APCh. 16 - Prob. 16.171APCh. 16 - Prob. 16.173APCh. 16 - Prob. 16.174AP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY