
Electric Circuits. (11th Edition)
11th Edition
ISBN: 9780134746968
Author: James W. Nilsson, Susan Riedel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 16, Problem 14P
a.
To determine
Plot the one full cycle of the periodic function over the interval
b.
To determine
Derive the expressions for the Fourier coefficients
c.
To determine
Derive the first three nonzero terms in the Fourier series of
d.
To determine
Derive the first three nonzero terms in the Fourier series of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
12.25 Determine i̟L (t) in the circuit of Fig. P12.25, given that
before closing the switch vc (0) = 12 V. Also, the element values
are R=22, L= 1.5 H, and C = 0.5 F.
R
ww
t=0
VC
+
L
ell
IiL
Figure P12.25 Circuit for Problem 12.25.
Don't use ai to answer I will report you answer
Turn sel logic into Boolean logic?
51P1T+51G1T+67P1+PB10+50P1+50G1+3P59+81D1T+81D2T
Chapter 16 Solutions
Electric Circuits. (11th Edition)
Ch. 16.2 - Objective 1–Be able to calculate the trigonometric...Ch. 16.2 - Prob. 2APCh. 16.3 - Derive the Fourier series for the periodic voltage...Ch. 16.4 - Compute A1 – A5 and θ1 – θ5 for the periodic...Ch. 16.5 - The periodic triangular-wave voltage seen on the...Ch. 16.5 - The periodic square-wave shown on the top is...Ch. 16.6 - a. 16.7 The periodic voltage function in...Ch. 16.8 - Derive the expression for the Fourier coefficients...Ch. 16.8 - Calculate the rms value of the periodic current in...Ch. 16.9 - Prob. 10AP
Ch. 16 - Prob. 1PCh. 16 - Derive the Fourier series for the periodic voltage...Ch. 16 - Find the Fourier series expressions for the...Ch. 16 - Prob. 4PCh. 16 - Prob. 5PCh. 16 - Prob. 6PCh. 16 - Prob. 7PCh. 16 - Prob. 8PCh. 16 - Prob. 9PCh. 16 - Prob. 10PCh. 16 - Prob. 11PCh. 16 - Prob. 13PCh. 16 - Prob. 14PCh. 16 - Prob. 15PCh. 16 - Prob. 16PCh. 16 - Prob. 17PCh. 16 - Prob. 18PCh. 16 - Derive the Fourier series for the periodic...Ch. 16 - Prob. 20PCh. 16 - Prob. 21PCh. 16 - Derive the Fourier series for the periodic...Ch. 16 - Prob. 23PCh. 16 - Prob. 24PCh. 16 - Prob. 25PCh. 16 -
Show that for large values of C Eq. 16.24 can be...Ch. 16 - Prob. 28PCh. 16 - Prob. 30PCh. 16 - Prob. 32PCh. 16 - The periodic current shown in Fig. P16.33 is...Ch. 16 - The periodic voltage across a 10 Ω resistor is...Ch. 16 - The triangular-wave voltage source, shown in Fig....Ch. 16 - Prob. 36PCh. 16 -
Find the rms value of the voltage shown in Fig....Ch. 16 - Use the first four nonzero terms in the Fourier...Ch. 16 -
Estimate the rms value of the periodic...Ch. 16 -
Estimate the rms value of the full-wave rectified...Ch. 16 - Prob. 41PCh. 16 - Prob. 42PCh. 16 - Prob. 43PCh. 16 - Prob. 44PCh. 16 - Prob. 45PCh. 16 - Prob. 46PCh. 16 - Prob. 48PCh. 16 - Make an amplitude and phase plot, based on Eq....Ch. 16 - Prob. 50PCh. 16 - Prob. 51PCh. 16 - A periodic function is represented by a Fourier...Ch. 16 - Prob. 53PCh. 16 - Prob. 54PCh. 16 - Prob. 55PCh. 16 - Prob. 57P
Knowledge Booster
Similar questions
- By series and parallel combinations find the equivalent 1) Inductance for this circuit. 215h m Dop 64 Mo 6h 64 26harrow_forwardElectrical engineering, Impedance and propagation coefficient.arrow_forwardwrite but do not solve the set of time domain 4) NODAL equations for this circuit- до V(+) mm 20 3h 1156 403arrow_forward
- 3 Write but do not solve the set of time domain Loop equations for this circuit. 3F 322 5h ree w 4A 6h (±) V (c) 70{ 80arrow_forwardBy series and parallel combinations find the equivalent capacitance for this circuit. 15€ Cequivalent 6f 6f 6E 12Farrow_forwardQ: Design of AM system 1- Draw the block diagram for AM transmitter 2- Draw the output waveform of transmitter and what is the device measure the output? 3- Draw the spectrum frequency for the output of transmitter 4- Why we use the modulation? Doarrow_forward
- The following circuit is at steady state for t<0. At t=0 sec, the switch is open. Let R₁ =14 ohms, R₂=14 ohms, R3-4 ohms, C₁-1 F, Vx-16 V and Ix-7 A. Find Vc1 (0.8 sec) and voltage across resistor R3 = v(1.4 sec), as follows: Vc1(0) in volts= Vc1(00) in volts= Rth in ohms= Vc1(t-0.8 sec) in volts= v(t-1.4 sec) in volts= Vx w t=0 The relative tolerance for this problem is 10 %. + www R₂ Vit R3 + Vc1(t) C₁arrow_forwardFor the circuit shown, the switch opens at t=0 sec. Find i(t=1.5) value as follows. Let R1-12 ohm, R₂-8 ohm, L=0.6 H, V≤1-10 V and V2-8 V, and determine: i(0) = A A i(∞0) = Rth = i(1.5 sec) Ω A R₁ L i(t) VS2 R2 w The relative tolerance for this problem is 9 %. + V S1arrow_forwardYou must have noticed that, when a major appliance is turned on (such as an AC unit, garbage disposal, etc.), your house lights dim momentarily. This is the effect of the RL circuit formed by the inductance and resistance of the transmission line and the loads (light bulbs, appliance, etc.) In fact, even a single straight wire has inductance. The inductance (and the resistance) of a long transmission line can be problematic if the system is not properly designed. The voltage on a power transmission line is alternating current but the effect of transmission line can be simulated by a DC circuit as shown below, where R=0.005 2 /km and L=0.04 H/km representing the resistance and inductance of the transmission line per km relationship that is with the ration: L-8 R. In the circuit, Right =160 represents light bulb resistances, R₁ = 7 represents the resistance of a 'major appliance', and the switch indicates when the appliance is turn on. Alice, a newly hired engineer, needs to determine…arrow_forward
- For the circuit shown, let Let R₁-3 ohms, R2-7 ohms, C₁-2 F, VX-20 V and Ix-1 A. Calculate the capacitor voltages, as shows, at time t= (-1.3) sec and at t=1.9 sec. In particular find: V(0) = V(∞) = Rth V(t=-1.3 sec) in volts- V(t-1.9 sec) in volts- C1 HH +V(t) = - (V) (V) (S2) (V) 3 (V) Vx +1 R1 t=0 The relative tolerance for this problem is 9 %. R₂arrow_forwardIn the circuit below, the switch moves from position 1 to position 2 at t=0. Select the closest waveform which represents the inductor current: 2 R 2R V₁ t=0 0 t=0 (a) (d) t=0 (b) (e) 0 0 t=0 (c) t=0 요 (f) Note: choices are listed randomly; may not alphabetically ordered. (given during job interview question, with permission) waveform c waveform a O waveform d waveform e waveform b ○ waveform f t=0 Rarrow_forwardLet R1-8 ohms, R₂-5 ohms, L₁-2 H, Vx=10 V, in the circuit shown, to calculate the inductor current at time t= (0.6 sec) and at t= 2 sec, as follows: i(0) = 1(00) - Rth= = i(0.6 sec) = i(2 sec) = R₁ (A) (A) (N) Vx 1=0 The relative tolerance for this problem is 9 %. (A) (A) R2 ell 4₁arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,