General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 16, Problem 107E
(a)
To determine
The electric field outside the cylinder.
(b)
To determine
To show the electric field inside the cylinder as
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A charge of 2.5 uC (micro-Coulombs) is distributed evenly along a rod of length 6m. If the rod is bent into a circular arc with
a radius of curvature of 2.4m, what is the magnitude of the electric field at the centre of curvature? Use units of N/C.
Consider a sphere of radius R=50cm with a density of charge given by
ρ(r) = αr
and a total charge Q = 10*10-6 C.
Determine the value of α.
Determine how the electric field varies in all space.
Explicitly calculate the value of the field at the surface of the sphere.
A 10 cm × 10 cm piece of aluminum foil of 0.1 mm thickness has a charge of 20 μC that spreads on both wide side surfaces evenly. You may ignore the charges on the thin sides of the edges. (a) Find the charge density. (b) Find the electric field 1 cm from the center, assuming approximate planar symmetry.
Chapter 16 Solutions
General Physics, 2nd Edition
Ch. 16 - Prob. 1RQCh. 16 - Prob. 2RQCh. 16 - Prob. 3RQCh. 16 - Prob. 4RQCh. 16 - Prob. 5RQCh. 16 - Prob. 6RQCh. 16 - Prob. 7RQCh. 16 - Prob. 8RQCh. 16 - Prob. 9RQCh. 16 - Prob. 10RQ
Ch. 16 - Prob. 11RQCh. 16 - Prob. 12RQCh. 16 - Prob. 13RQCh. 16 - Prob. 1ECh. 16 - Prob. 2ECh. 16 - Prob. 3ECh. 16 - Prob. 4ECh. 16 - Prob. 5ECh. 16 - Prob. 6ECh. 16 - Prob. 7ECh. 16 - Prob. 8ECh. 16 - Prob. 9ECh. 16 - Prob. 10ECh. 16 - Prob. 11ECh. 16 - Prob. 12ECh. 16 - Prob. 13ECh. 16 - Prob. 14ECh. 16 - Prob. 15ECh. 16 - Prob. 16ECh. 16 - Prob. 17ECh. 16 - Prob. 18ECh. 16 - Prob. 19ECh. 16 - Prob. 20ECh. 16 - Prob. 21ECh. 16 - Prob. 22ECh. 16 - Prob. 23ECh. 16 - Prob. 24ECh. 16 - Prob. 25ECh. 16 - Prob. 26ECh. 16 - Prob. 27ECh. 16 - Prob. 28ECh. 16 - Prob. 29ECh. 16 - Prob. 30ECh. 16 - Prob. 31ECh. 16 - Prob. 32ECh. 16 - Prob. 33ECh. 16 - Prob. 34ECh. 16 - Prob. 35ECh. 16 - Prob. 36ECh. 16 - Prob. 37ECh. 16 - Prob. 38ECh. 16 - Prob. 39ECh. 16 - Prob. 40ECh. 16 - Prob. 41ECh. 16 - Prob. 42ECh. 16 - Prob. 43ECh. 16 - Prob. 44ECh. 16 - Prob. 45ECh. 16 - Prob. 46ECh. 16 - Prob. 47ECh. 16 - Prob. 48ECh. 16 - Prob. 49ECh. 16 - Prob. 50ECh. 16 - Prob. 51ECh. 16 - Prob. 52ECh. 16 - Prob. 53ECh. 16 - Prob. 54ECh. 16 - Prob. 55ECh. 16 - Prob. 56ECh. 16 - Prob. 57ECh. 16 - Prob. 58ECh. 16 - Prob. 59ECh. 16 - Prob. 60ECh. 16 - Prob. 61ECh. 16 - Prob. 62ECh. 16 - Prob. 63ECh. 16 - Prob. 64ECh. 16 - Prob. 65ECh. 16 - Prob. 66ECh. 16 - Prob. 67ECh. 16 - Prob. 68ECh. 16 - Prob. 69ECh. 16 - Prob. 70ECh. 16 - Prob. 72ECh. 16 - Prob. 73ECh. 16 - Prob. 74ECh. 16 - Prob. 75ECh. 16 - Prob. 76ECh. 16 - Prob. 78ECh. 16 - Prob. 81ECh. 16 - Prob. 82ECh. 16 - Prob. 83ECh. 16 - Prob. 84ECh. 16 - Prob. 85ECh. 16 - Prob. 86ECh. 16 - Prob. 87ECh. 16 - Prob. 88ECh. 16 - Prob. 89ECh. 16 - Prob. 90ECh. 16 - Prob. 91ECh. 16 - Prob. 92ECh. 16 - Prob. 93ECh. 16 - Prob. 94ECh. 16 - Prob. 95ECh. 16 - Prob. 96ECh. 16 - Prob. 97ECh. 16 - Prob. 98ECh. 16 - Prob. 99ECh. 16 - Prob. 100ECh. 16 - Prob. 101ECh. 16 - Prob. 102ECh. 16 - Prob. 103ECh. 16 - Prob. 104ECh. 16 - Prob. 105ECh. 16 - Prob. 106ECh. 16 - Prob. 107ECh. 16 - Prob. 108E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardThe electric field 10.0 cm from the surface of a copper ball of radius 5.0 cm is directed toward the ball's center and has magnitude 4.0102 N/C. How much charge is on the surface of the ball?arrow_forwardA circular ring of charge with radius b has total charge q uniformly distributed around it. What is the magnitude of the electric field at the center of the ring? (a) 0 (b) keq/b2 (c) keq2/b2 (d) keq2/b (e) none of those answersarrow_forward
- A thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forwardFIGURE P25.41 Problems 51 and 52. Find the surface charge density of a sheet of charge that would produce the same electric field as that of a very large flat slab of uniform charge density = 2.00 C/m3 and thickness 2t = 5.00 cm (Fig. P25.51).arrow_forwardA very large nonconducting plate lying in the xy-plane carries a charge per unit area of 3?. A second such plate located at z = 2.40 cm and oriented parallel to the xy-plane carries a charge per unit area of −2?. Find the electric field for the following. (a) when z<0 (b) when 0 < z < 2.40 cm (c) when z > 2.40 cmarrow_forward
- helparrow_forwardConsider two infinite planes of charge. One coincides with the x-y plane and has a charge density of +9.5 x 10-12 C/m2. The second plane coincides with the y-z plane and has a charge density of -9.5 x 10-12 C/m2. Calculate the magnitude of electric field, in N/C, at any location that is not on the x-y or y-z planes. Use ε 0 = 8.9 x 10-12 F/m. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forwardOne of my homework problems asks this: A non-conducting sphere of radius R = 9.0 cm carries a charge Q = 5.0 mC distributed uniformly throughout its volume. At what distance, measured from the center of the sphere, does the electric field reach a value equal to half its maximum value? The correct answer is marked as 4.5 cm and 12.7 cm. I worked out: Emax = kQ/R2 for half the max electric field, i'll use R2 for radius we need to find Ehalf = kQ/2R2 = kQ/R22 giving me: R2 = square root of 2R2 = R*square root of 2 = 9*square root of 2 = 12.7 cm I am unable to figure out how 4.5 cm is also the answer.arrow_forward
- An insulating sphere with radius 0.120 m has +0.900 nC (nano coulumb) of charge uniformly distributed throughout its volume. The center of the sphere is 0.240 m above a large uniform sheet that has a charge density -8.00 nC/m². Find all points inside the sphere where the electric field is zero. Or, show that there are no such points.arrow_forwardTwo parallel conducting plates, each of cross-sectional area 400.0 cm? are 2.0 cm apart and uncharged. If 1.0x102 electrons are transferred from one plate to the other, what are a) the charge density on each plate? b) the electric flux through a circle of radius 3 cm between the plates when the normal to the circle makes an angle of 5.0° with a line perpendicular to the plates.arrow_forwardConsider a ring of charge. The ring is in the x-y plane and has a radius of 3.5 m. The charge per angle as a function of angle α (in radians) around the ring is given by dQ/dα = 6.9 α (nC/rad). Calculate the z-component of the electric field, in N/C, at the coordinate (0, 0, 9 m). Use k = 9 x 109 N m2 / C2. (Please answer to the fourth decimal place - i.e 14.3225)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY