Multivariable Calculus
8th Edition
ISBN: 9781305266643
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15.7, Problem 31E
When studying the formation of mountain ranges, geologists estimate the amount of work required to lift a mountain from sea level. Consider a mountain that is essentially in the shape of a right circular cone. Suppose that the weight density of the material in the vicinity of a point P is g(P) and the height is h(P).
(a) Find a definite
(b) Assume that Mount Fuji in Japan is in the shape of a right circular cone with radius 62,000 ft, height 12,400 ft, and density a constant 200 lb/ft3. How much work was done in forming Mount Fuji if the land was initially at sea level?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4. A spherical hailstone grows in a cloud. The hailstone maintains a spherical shape while its radius
increases at a rate of 0.2 mm/min
a) Express the radius, r, in millimetres, of the hailstone, as a function of the time, t, in minutes.
b) Express the volume, V, in cubic millimetres, of the hailstone, in terms of r.
c) Determine (Vºr)(t) and explain what it means.
d) What is the volume of the hailstone 1h after it begins to form?
An explosion at an oil rig located in gulf waters causesan elliptical oil slick to spread on the surface from the rig. The slickis a constant 9 in. thick. After several days, when the major axis ofthe slick is 2 mi long and the minor axis is 3/4 mi wide, it is determinedthat its length is increasing at the rate of 30 ft/hr, and itswidth is increasing at the rate of 10 ft/hr. At what rate (in cubic feetper hour) is oil flowing from the site of the rig at that time?
Find the fluid force (in lb) on a circular observation window of radius 1 foot in a vertical wall of a large water-filled tank at a fish hatchery when the center of the window is 8 feet and d feet (d > 1)
below the water's surface (see figure). Use trigonometric substitution to evaluate the one integral. Water weighs 62.4 pounds per cubic foot. (Recall that in Section 7.7, in a similar problem, you
evaluated one integral by a geometric formula and the other by observing that the integrand was odd.)
(a) 8 feet
(b) d feet below
X
lb
lb
x² + y² = 1
-2
2
X
Chapter 15 Solutions
Multivariable Calculus
Ch. 15.1 - (a) Estimate the volume of the solid that lies...Ch. 15.1 - If R = [0, 4] [1, 2], use a Riemann sum with m =...Ch. 15.1 - (a) Use a Riemann sum with m = n = 2 to estimate...Ch. 15.1 - (a) Estimate the volume of the solid that lies...Ch. 15.1 - Let V be the volume of the solid that lies under...Ch. 15.1 - A 20-ft-by-30-ft swimming pool is filled with...Ch. 15.1 - A contour map is shown for a function f on the...Ch. 15.1 - The contour map shows the temperature, in degrees...Ch. 15.1 - Evaluate the double integral by first identifying...Ch. 15.1 - Evaluate the double integral by first identifying...
Ch. 15.1 - Evaluate the double integral by first identifying...Ch. 15.1 - The integral R9y2dA, where R = [0, 4] [0, 2],...Ch. 15.1 - Find 02f(x,y)dxand 03f(x,y)dy 13. f(x, y) = x +...Ch. 15.1 - Find 02f(x,y)dxand 03f(x,y)dy 14.f(x,y)=yx+2Ch. 15.1 - Calculate the iterated integral. 15....Ch. 15.1 - Calculate the iterated integral. 16....Ch. 15.1 - Calculate the iterated integral. 17....Ch. 15.1 - Calculate the iterated integral. 18....Ch. 15.1 - Calculate the iterated integral. 19....Ch. 15.1 - Calculate the iterated integral. 20. 1315lnyxydydxCh. 15.1 - Calculate the iterated integral. 21....Ch. 15.1 - Calculate the iterated integral. 22. 0102yexydxdyCh. 15.1 - Calculate the iterated integral. 23....Ch. 15.1 - Calculate the iterated integral. 24....Ch. 15.1 - Calculate the iterated integral. 25....Ch. 15.1 - Prob. 26ECh. 15.1 - Calculate the double integral. 27....Ch. 15.1 - Calculate the double integral. 28....Ch. 15.1 - Calculate the double integral. 29....Ch. 15.1 - Calculate the double integral. 30....Ch. 15.1 - Calculate the double integral. 31....Ch. 15.1 - Prob. 32ECh. 15.1 - Prob. 33ECh. 15.1 - Prob. 34ECh. 15.1 - Sketch the solid whose volume is given by the...Ch. 15.1 - Sketch the solid whose volume is given by the...Ch. 15.1 - Find the volume of the solid that lies under the...Ch. 15.1 - Find the volume of the solid that lies under the...Ch. 15.1 - Find the volume of the solid lying under the...Ch. 15.1 - Find the volume of the solid enclosed by the...Ch. 15.1 - Find the volume of the solid enclosed by the...Ch. 15.1 - Find the volume of the solid in the first octant...Ch. 15.1 - Find the volume of the solid enclosed by the...Ch. 15.1 - Graph the solid that lies between the surface z =...Ch. 15.1 - Find the average value of f over the given...Ch. 15.1 - Find the average value of f over the given...Ch. 15.1 - Use symmetry to evaluate the double integral. 49....Ch. 15.1 - Prob. 50ECh. 15.1 - Prob. 52ECh. 15.2 - Evaluate the iterated integral. 1. 1s0x(8x2y)dydxCh. 15.2 - Evaluate the iterated integral. 2. 020y2x2ydxdyCh. 15.2 - Evaluate the iterated integral. 3. 010yxey3dxdyCh. 15.2 - Evaluate the iterated integral. 4. 0/20xxsinydydxCh. 15.2 - Evaluate the iterated integral. 5....Ch. 15.2 - Evaluate the iterated integral. 6. 010ex1+exdwdvCh. 15.2 - Evaluate the double integral. 7....Ch. 15.2 - Evaluate the double integral. 8....Ch. 15.2 - Evaluate the double integral. 9....Ch. 15.2 - Evaluate the double integral. 10....Ch. 15.2 - Draw an example of a region that is (a) type I but...Ch. 15.2 - Draw an example of a region that is (a) both type...Ch. 15.2 - Express D as a region of type I and also as a...Ch. 15.2 - Express D as a region of type I and also as a...Ch. 15.2 - Set up iterated integrals for both orders of...Ch. 15.2 - Set up iterated integrals for both orders of...Ch. 15.2 - Evaluate the double integral. 17.DxcosydA, D is...Ch. 15.2 - Evaluate the double integral. 18. D(x2+2y)dA, D is...Ch. 15.2 - Evaluate the double integral. 19. Dy2dA, D is the...Ch. 15.2 - Evaluate the double integral. 20. DxydA, D is...Ch. 15.2 - Evaluate the double integral. 21. D(2xy)dA, D is...Ch. 15.2 - Evaluate the double integral. 22. DydA, D is the...Ch. 15.2 - Find the volume of the given solid. 23. Under the...Ch. 15.2 - Find the volume of the given solid. 24. Under the...Ch. 15.2 - Find the volume of the given solid. 25. Under the...Ch. 15.2 - Find the volume of the given solid. 26. Enclosed...Ch. 15.2 - Find the volume of the given solid. 27. The...Ch. 15.2 - Find the volume of the given solid. 28. Bounded by...Ch. 15.2 - Find the volume of the given solid. 29. Enclosed...Ch. 15.2 - Find the volume of the given solid. 30. Bounded by...Ch. 15.2 - Find the volume of the given solid. 31. Bounded by...Ch. 15.2 - Find the volume of the given solid. 32. Bounded by...Ch. 15.2 - Prob. 33ECh. 15.2 - Prob. 34ECh. 15.2 - Find the volume of the solid by subtracting two...Ch. 15.2 - Find the volume of the solid by subtracting two...Ch. 15.2 - Find the volume of the solid by subtracting two...Ch. 15.2 - Find the volume of the solid by subtracting two...Ch. 15.2 - Sketch the solid whose volume is given by the...Ch. 15.2 - Sketch the solid whose volume is given by the...Ch. 15.2 - Sketch the region of integration and change the...Ch. 15.2 - Sketch the region of integration and change the...Ch. 15.2 - Sketch the region of integration and change the...Ch. 15.2 - Sketch the region of integration and change the...Ch. 15.2 - Sketch the region of integration and change the...Ch. 15.2 - Sketch the region of integration and change the...Ch. 15.2 - Evaluate the integral by reversing the order of...Ch. 15.2 - Evaluate the integral by reversing the order of...Ch. 15.2 - Evaluate the integral by reversing the order of...Ch. 15.2 - Evaluate the integral by reversing the order of...Ch. 15.2 - Evaluate the integral by reversing the order of...Ch. 15.2 - Evaluate the integral by reversing the order of...Ch. 15.2 - Prob. 57ECh. 15.2 - Express D as a union of regions of type I or type...Ch. 15.2 - Prob. 59ECh. 15.2 - Prob. 60ECh. 15.2 - Prob. 61ECh. 15.2 - Find the averge value of f over the region D. 62....Ch. 15.2 - Prob. 63ECh. 15.2 - In evaluating a double integral over a region D, a...Ch. 15.2 - Use geometry or symmetry, or both, to evaluate the...Ch. 15.2 - Use geometry or symmetry, or both, to evaluate the...Ch. 15.2 - Prob. 67ECh. 15.2 - Prob. 68ECh. 15.2 - Prob. 69ECh. 15.3 - A region R is shown. Decide whether to use polar...Ch. 15.3 - A region R is shown. Decide whether to use polar...Ch. 15.3 - A region R is shown. Decide whether to use polar...Ch. 15.3 - A region R is shown. Decide whether to use polar...Ch. 15.3 - Sketch the region whose area is given by the...Ch. 15.3 - Sketch the region whose area is given by the...Ch. 15.3 - Evaluate the given integral by changing to polar...Ch. 15.3 - Evaluate the given integral by changing to polar...Ch. 15.3 - Evaluate the given integral by changing to polar...Ch. 15.3 - Evaluate the given integral by changing to polar...Ch. 15.3 - Evaluate the given integral by changing to polar...Ch. 15.3 - Evaluate the given integral by changing to polar...Ch. 15.3 - Evaluate the given integral by changing to polar...Ch. 15.3 - Evaluate the given integral by changing to polar...Ch. 15.3 - Use a double integral to find the area of the...Ch. 15.3 - Use a double integral to find the area of the...Ch. 15.3 - Use a double integral to find the area of the...Ch. 15.3 - Use a double integral to find the area of the...Ch. 15.3 - Use polar coordinates to find the volume of the...Ch. 15.3 - Use polar coordinates to find the volume of the...Ch. 15.3 - Use polar coordinates to find the volume of the...Ch. 15.3 - Use polar coordinates to find the volume of the...Ch. 15.3 - Use polar coordinates to find the volume of the...Ch. 15.3 - Use polar coordinates to find the volume of the...Ch. 15.3 - Use polar coordinates to find the volume of the...Ch. 15.3 - Use polar coordinates to find the volume of the...Ch. 15.3 - Use polar coordinates to find the volume of the...Ch. 15.3 - (a) A cylindrical drill with radius r1 is used to...Ch. 15.3 - Evaluate the iterated integral by converting to...Ch. 15.3 - Evaluate the iterated integral by converting to...Ch. 15.3 - Evaluate the iterated integral by converting to...Ch. 15.3 - Evaluate the iterated integral by converting to...Ch. 15.3 - Express the double integral in terms of a single...Ch. 15.3 - Express the double integral in terms of a single...Ch. 15.3 - A swimming pool is circular with a 40-ft diameter....Ch. 15.3 - An agricultural sprinkler distributes water in a...Ch. 15.3 - Find the average value of the function...Ch. 15.3 - Prob. 38ECh. 15.3 - Use polar coordinates to combine the sum...Ch. 15.3 - (a) We define the improper integral (over the...Ch. 15.3 - Prob. 41ECh. 15.4 - Electric charge is distributed over the rectangle...Ch. 15.4 - Electric charge is distributed over the disk x2 +...Ch. 15.4 - Find the mass and center of mass of the lamina...Ch. 15.4 - Find the mass and center of mass of the lamina...Ch. 15.4 - Find the mass and center of mass of the lamina...Ch. 15.4 - Find the mass and center of mass of the lamina...Ch. 15.4 - Find the mass and center of mass of the lamina...Ch. 15.4 - Find the mass and center of mass of the lamina...Ch. 15.4 - Find the mass and center of mass of the lamina...Ch. 15.4 - Find the mass and center of mass of the lamina...Ch. 15.4 - A lamina occupies the part of the disk x2 + y2 1...Ch. 15.4 - Prob. 12ECh. 15.4 - The boundary of a lamina consists of the...Ch. 15.4 - Find the center of mass of the lamina in Exercise...Ch. 15.4 - Find the center of mass of a lamina in the shape...Ch. 15.4 - A lamina occupies the region inside the circle x2...Ch. 15.4 - Find the moments of inertia Ix, Iy, I0 for the...Ch. 15.4 - Find the moments of inertia Ix, Iy, I0 for the...Ch. 15.4 - Prob. 19ECh. 15.4 - Prob. 20ECh. 15.4 - A lamina with constant density (x, y) = occupies...Ch. 15.4 - A lamina with constant density (x, y) = occupies...Ch. 15.4 - A lamina with constant density (x, y) = occupies...Ch. 15.4 - A lamina with constant density (x, y) = occupies...Ch. 15.4 - Prob. 27ECh. 15.4 - Prob. 28ECh. 15.4 - Prob. 29ECh. 15.4 - (a) A lamp has two bulbs, each of a type with...Ch. 15.4 - Prob. 32ECh. 15.4 - When studying the spread of an epidemic, we assume...Ch. 15.5 - Find the area of the surface. 1. The part of the...Ch. 15.5 - Find the area of the surface. 2. The part of the...Ch. 15.5 - Find the area of the surface. 3. The part of the...Ch. 15.5 - Find the area of the surface. 4. The part of the...Ch. 15.5 - Find the area of the surface. 5. The part of the...Ch. 15.5 - Find the area of the surface. 6. The part of the...Ch. 15.5 - Find the area of the surface. 7. The part of the...Ch. 15.5 - Prob. 8ECh. 15.5 - Find the area of the surface. 9. The part of the...Ch. 15.5 - Find the area of the surface. 10. The part of the...Ch. 15.5 - Find the area of the surface. 11. The part of the...Ch. 15.5 - Find the area of the surface. 12. The part of the...Ch. 15.5 - Find the area of the surface correct to four...Ch. 15.5 - Prob. 14ECh. 15.5 - Show that the area of the part ol the plane z = ax...Ch. 15.5 - Prob. 22ECh. 15.5 - Find the area of the finite part of the paraboloid...Ch. 15.5 - The figure shows the surface created when the...Ch. 15.6 - Evaluate the integral in Example 1, integrating...Ch. 15.6 - Evaluate the integral E(xy+z2)dv, where...Ch. 15.6 - Evaluate the iterated integral....Ch. 15.6 - Evaluate the iterated integral....Ch. 15.6 - Evaluate the iterated integral. 5....Ch. 15.6 - Evaluate the iterated integral. 6....Ch. 15.6 - Evaluate the iterated integral....Ch. 15.6 - Evaluate the iterated integral. 8....Ch. 15.6 - Evaluate the triple integral. 9. EydV, where...Ch. 15.6 - Evaluate the triple integral. 10.EezydV, where...Ch. 15.6 - Evaluate the triple integral. 11. Ezx2+z2dV, where...Ch. 15.6 - Evaluate the triple integral. 12. EsinydV, where E...Ch. 15.6 - Evaluate the triple integral. 13. E6xydV, where E...Ch. 15.6 - Evaluate the triple integral. 14. E(xy)dV, where E...Ch. 15.6 - Evaluate the triple integral. 15. Ty2dV. where T...Ch. 15.6 - Evaluate the triple integral. 16. TxzdV, where T...Ch. 15.6 - Evaluate the triple integral. 17. ExdV, where E is...Ch. 15.6 - Evaluate the triple integral. 18. EzdV, where E is...Ch. 15.6 - Use a triple integral to find the volume of the...Ch. 15.6 - Use a triple integral to find the volume of the...Ch. 15.6 - Use a triple integral to find the volume of the...Ch. 15.6 - Use a triple integral to find the volume of the...Ch. 15.6 - Use the Midpoint Rule for triple integrals...Ch. 15.6 - Use the Midpoint Rule for triple integrals...Ch. 15.6 - Sketch the solid whose volume is given by the...Ch. 15.6 - Sketch the solid whose volume is given by the...Ch. 15.6 - Express the integralEf(x,y,z)dV, as an iterated...Ch. 15.6 - Express the integral Ef(x,y,z)dV, as an iterated...Ch. 15.6 - Express the integral Ef(x,y,z)dV,as an iterated...Ch. 15.6 - Express the integral Ef(x,y,z)dV,as an iterated...Ch. 15.6 - The figure shows the region of integration for the...Ch. 15.6 - The figure shows the region of integration for the...Ch. 15.6 - Write five other iterated integrals that are equal...Ch. 15.6 - Write five other iterated integrals that are equal...Ch. 15.6 - Evaluate the triple integral using only geometric...Ch. 15.6 - Evaluate the triple integral using only geometric...Ch. 15.6 - Find the mass and center of mass of the solid E...Ch. 15.6 - Find the mass and center of mass of the solid R...Ch. 15.6 - Find the mass and center of mass of the solid E...Ch. 15.6 - Find the mass and center of mass of the solid F....Ch. 15.6 - Assume that the solid has constant density k. 43....Ch. 15.6 - Prob. 44ECh. 15.6 - Prob. 45ECh. 15.6 - Prob. 46ECh. 15.6 - Set up, but do not evaluate, integral expressions...Ch. 15.6 - Set up, but do not evaluate, integral expressions...Ch. 15.6 - Prob. 51ECh. 15.6 - Prob. 52ECh. 15.6 - The average value of a function f (x, y, z) over a...Ch. 15.6 - The average value of a function f (x, y, z) over a...Ch. 15.7 - Plot the point whose cylindrical coordinates are...Ch. 15.7 - Prob. 2ECh. 15.7 - Change from rectangular to cylindrical...Ch. 15.7 - Prob. 4ECh. 15.7 - Prob. 5ECh. 15.7 - Describe in words the surface whose equation is...Ch. 15.7 - Identify the surface whose equation is given. 7....Ch. 15.7 - Identify the surface whose equation is given. 8. r...Ch. 15.7 - Write the equations in cylindrical coordinates. 9....Ch. 15.7 - Write the equations in cylindrical coordinates....Ch. 15.7 - Sketch the solid described by the given...Ch. 15.7 - Sketch the solid described by the given...Ch. 15.7 - A cylindrical shell is 20 cm long, with inner...Ch. 15.7 - Prob. 14ECh. 15.7 - Sketch the solid whose volume is given by the...Ch. 15.7 - Prob. 16ECh. 15.7 - Use cylindrical coordinates. 17. Evaluate...Ch. 15.7 - Use cylindrical coordinates. 18. EvaluateEZdV,...Ch. 15.7 - Use cylindrical coordinates. 19. Evaluate...Ch. 15.7 - Use cylindrical coordinates. 20. EvaluateE(xy)dV,...Ch. 15.7 - Use cylindrical coordinates. 21. Evaluate Ex2dV,...Ch. 15.7 - Use cylindrical coordinates. 22. Find the volume...Ch. 15.7 - Use cylindrical coordinates. 23. Find the volume...Ch. 15.7 - Use cylindrical coordinates. 24. Find the volume...Ch. 15.7 - Use cylindrical coordinates. 25. (a) Find the...Ch. 15.7 - Use cylindrical coordinates. 26. (a) Find the...Ch. 15.7 - Prob. 27ECh. 15.7 - Prob. 28ECh. 15.7 - Evaluate the integral by changing to cylindrical...Ch. 15.7 - Evaluate the integral by changing to cylindrical...Ch. 15.7 - When studying the formation of mountain ranges,...Ch. 15.8 - Prob. 1ECh. 15.8 - Prob. 2ECh. 15.8 - Prob. 3ECh. 15.8 - Change from rectangular to spherical coordinates....Ch. 15.8 - Describe in words the surface whose equation is...Ch. 15.8 - Prob. 6ECh. 15.8 - Identify the surface whose equation is given. 7. ...Ch. 15.8 - Identify the surface whose equation is given. 8. =...Ch. 15.8 - Write the equation in spherical coordinates. 9....Ch. 15.8 - Write the equation in spherical coordinates. 10....Ch. 15.8 - Sketch the solid described by the given...Ch. 15.8 - Sketch the solid described by the given...Ch. 15.8 - Sketch the solid described by the given...Ch. 15.8 - Sketch the solid described by the given...Ch. 15.8 - A solid lies above the cone z = x2+y2 and below...Ch. 15.8 - (a) Find inequalities that describe a hollow ball...Ch. 15.8 - Sketch the solid whose volume is given by the...Ch. 15.8 - Sketch the solid whose volume is given by the...Ch. 15.8 - Set up the triple integral of an arbitrary of an...Ch. 15.8 - Set up the triple integral of an arbitrary of an...Ch. 15.8 - Use spherical coordinates. 21. Evaluate B (x2+y2 +...Ch. 15.8 - Use spherical coordinates. 22. Evaluate E y2z2 dV,...Ch. 15.8 - Use spherical coordinates. 23. Evaluate E (x2 +...Ch. 15.8 - Use spherical coordinates. 24. Evaluate E y2 dV,...Ch. 15.8 - Use spherical coordinates. 25. Evaluate E xe x2 +...Ch. 15.8 - Use spherical coordinates. 26. Evaluate E...Ch. 15.8 - Use spherical coordinates. 27. Find the volume of...Ch. 15.8 - Use spherical coordinates. 28. Find the average...Ch. 15.8 - Use spherical coordinates. 29. (a) Find the volume...Ch. 15.8 - Use spherical coordinates. 30. Find the volume of...Ch. 15.8 - Prob. 31ECh. 15.8 - Prob. 32ECh. 15.8 - Use spherical coordinates. 33. (a) Find the...Ch. 15.8 - Use spherical coordinates. 34. Find the mass and...Ch. 15.8 - Use cylindrical or spherical coordinates,...Ch. 15.8 - Use cylindrical or spherical coordinates,...Ch. 15.8 - Prob. 37ECh. 15.8 - Use cylindrical or spherical coordinates,...Ch. 15.8 - Evaluate the integral by changing to spherical...Ch. 15.8 - Evaluate the integral by changing to spherical...Ch. 15.8 - Evaluate the integral by changing to spherical...Ch. 15.8 - Prob. 44ECh. 15.8 - Prob. 45ECh. 15.8 - Prob. 46ECh. 15.8 - Show that x2+y2+z2e-(x2+y2+z2) dx dy dz = 2 (The...Ch. 15.8 - Prob. 49ECh. 15.9 - Find the Jacobian of the transformation. 1. x = 2u...Ch. 15.9 - Find the Jacobian of the transformation. 2. x = u2...Ch. 15.9 - Prob. 3ECh. 15.9 - Find the Jacobian of the transformation. 4. x =...Ch. 15.9 - Find the Jacobian of the transformation. 5. x =...Ch. 15.9 - Find the Jacobian of the transformation. 6. x = u...Ch. 15.9 - Find the image of the set S under the given...Ch. 15.9 - Find the image of the set S under the given...Ch. 15.9 - Find the image of the set S under the given...Ch. 15.9 - Find the image of the set S under the given...Ch. 15.9 - A region R in the xy-plane is given. Find...Ch. 15.9 - Prob. 12ECh. 15.9 - A region R in the xy-plane is given. Find...Ch. 15.9 - A region R in the xy-plane is given. Find...Ch. 15.9 - Use the given transformation to evaluate the...Ch. 15.9 - Use the given transformation to evaluate the...Ch. 15.9 - Use the given transformation to evaluate the...Ch. 15.9 - Use the given transformation to evaluate the...Ch. 15.9 - Use the given transformation to evaluate the...Ch. 15.9 - Use the given transformation to evaluate the...Ch. 15.9 - (a) Evaluate E dV, where E is the solid enclosed...Ch. 15.9 - An important problem in thermodynamics is to find...Ch. 15.9 - Evaluate the integral by making an appropriate...Ch. 15.9 - Evaluate the integral by making an appropriate...Ch. 15.9 - Evaluate the integral by making an appropriate...Ch. 15.9 - Evaluate the integral by making an appropriate...Ch. 15.9 - Prob. 27ECh. 15.9 - Prob. 28ECh. 15 - Suppose f is a continuous function defined on a...Ch. 15 - (a) How do you define Df(x,y)dA if D is a bounded...Ch. 15 - How do you change from rectangular coordinates to...Ch. 15 - If a lamina occupies a plane region D and has...Ch. 15 - Prob. 5RCCCh. 15 - Write an expression for the area of a surface with...Ch. 15 - Prob. 7RCCCh. 15 - Suppose a solid object occupies the region E and...Ch. 15 - (a) How do you change from rectangular coordinates...Ch. 15 - (a) If a transformation T is given by x = g(u, v),...Ch. 15 - Determine whether the statement is true or false....Ch. 15 - Determine whether the statement is true or false....Ch. 15 - Prob. 3RQCh. 15 - Prob. 4RQCh. 15 - Determine whether the statement is true or false....Ch. 15 - Determine whether the statement is true or false....Ch. 15 - Prob. 7RQCh. 15 - Determine whether the statement is true or false....Ch. 15 - Determine whether the statement is true or false....Ch. 15 - A contour map is shown for a function f on the...Ch. 15 - Use the Midpoint Rule to estimate the integral in...Ch. 15 - Calculate the iterated integral. 3....Ch. 15 - Calculate the iterated integral. 4. 0101yexydxdyCh. 15 - Calculate the iterated integral. 5....Ch. 15 - Calculate the iterated integral. 6. 01xex3xy2dydxCh. 15 - Calculate the iterated integral. 7....Ch. 15 - Calculate the iterated integral. 8....Ch. 15 - Write Rf(x,y)dA as an iterated integral, where R...Ch. 15 - Write Rf(x,y)dA as an iterated integral, where R...Ch. 15 - The cylindrical coordinates of a point are (23,3,...Ch. 15 - Prob. 12RECh. 15 - The spherical coordinates of a point are (8, /4,...Ch. 15 - Identify the surfaces whose equations are given....Ch. 15 - Write the equation in cylindrical coordinates and...Ch. 15 - Sketch the solid consisting of all points with...Ch. 15 - Describe the region whose area is given by the...Ch. 15 - Describe the solid whose volume is given by the...Ch. 15 - Calculate the iterated integral by first reversing...Ch. 15 - Calculate the iterated integral by first reversing...Ch. 15 - Calculate the value of the multiple integral. 21....Ch. 15 - Calculate the value of the multiple integral. 22....Ch. 15 - Calculate the value of the multiple integral. 23....Ch. 15 - Calculate the value of the multiple integral. 24....Ch. 15 - Calculate the value of the multiple integral. 25....Ch. 15 - Calculate the value of the multiple integral. 26....Ch. 15 - Calculate the value of the multiple integral. 27....Ch. 15 - Calculate the value of the multiple integral. 28....Ch. 15 - Calculate the value of the multiple integral. 29....Ch. 15 - Prob. 30RECh. 15 - Calculate the value of the multiple integral. 31....Ch. 15 - Prob. 32RECh. 15 - Calculate the value of the multiple integral. 33....Ch. 15 - Prob. 34RECh. 15 - Find the volume of the given solid. 35. Under the...Ch. 15 - Find the volume of the given solid. 36. Under the...Ch. 15 - Find the volume of the given solid. 37. The solid...Ch. 15 - Find the volume of the given solid. 38. Bounded by...Ch. 15 - Find the volume of the given solid. 39. One of the...Ch. 15 - Find the volume of the given solid. 40. Above the...Ch. 15 - Consider a lamina that occupies the region D...Ch. 15 - A lamina occupies the part of the disk x2 + y2 a2...Ch. 15 - (a) Find the centroid of a solid right circular...Ch. 15 - Prob. 44RECh. 15 - Find the area of the part of the surface z = x2 +...Ch. 15 - Use polar coordinates to evaluate...Ch. 15 - Use spherical coordinates to evaluate...Ch. 15 - Prob. 49RECh. 15 - Prob. 51RECh. 15 - Prob. 52RECh. 15 - Rewrite the integral 11x2101yf(x,y,z)dzdydxas an...Ch. 15 - Prob. 54RECh. 15 - Use the transformation u = x y, v = x + y to...Ch. 15 - Use the transformation x = u2, y = v2 z = w2 to...Ch. 15 - Use the change of variables formula and an...Ch. 15 - The Mean Value Theorem for double integrals says...Ch. 15 - Suppose that f is continuous on a disk that...Ch. 15 - Prob. 60RECh. 15 - If [x] denotes the greatest integer in x, evaluate...Ch. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - If a, b, and c are constant vectors, r is the...Ch. 15 - Prob. 5PCh. 15 - Leonhard Euler was able to find the exact sum of...Ch. 15 - Prob. 7PCh. 15 - Show that 0arctanxarctanxxdx=2lnby first...Ch. 15 - (a) Show that when Laplaces equation...Ch. 15 - Prob. 10PCh. 15 - If f is continuous, show that...Ch. 15 - Evaluate limnn2i=1nj=1n21n2+ni+j.Ch. 15 - The plane xa+yb+zc=1a0,b0,c0cuts the solid...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Find an equation of the tangent line to the parabola y=3x2 at the point 1,3.arrow_forwardAn outdoor decorative pond in the shape of a hemispherical tank is to be filled with water pumped into the tank through an inlet in its bottom. Suppose that the radius of the tank is R = 10 ft, that water is pumped in at a rate ofT ft/min, and that the tank is initially empty. As the tank fills, it loses water through evaporation. Assume that the rate of evaporation is proportional to the area A of the surface of the water and that the constant of proportionality is k = 0.01. Output: water evaporates at rate proportional to area A of surface ER- Input: water pumped in at rate 7 ft/min (a) hemispherical tank (b) cross-section of tank (a) The rate of change dv of the volume of the water at time t is a net rate. Use this net rate to determine a differential equation for the height h of the water at time t. The volume of the water shown in the figure is V = TRh -Th, dt where R = 10. Express the area of the surface of the water A = Tr2 in terms of h. dh dt (b) Solve the differential…arrow_forwardThe dimensions of a closed rectangular box are measured as 90 centimeters, 80 centimeters, and 60 centimeters, respectively, with the error in each measurement at most .2 centimeters. Use differentials to estimate the maximum error in calculating the surface area of the box. square centimetersarrow_forward
- A hose feeds into a small screen box of volume 20 cm³ that is suspended in a swimming pool. Water flows across the surface of the box at rate 38 cm³/s. Estimate div(v)(P), where v is the velocity field of the water in the pool and P is the center of the box. (Use decimal notation. Give your answer to one decimal place.) div(v)(P) = What are the units of div(v)(P)? The units of div(v) (P) are perarrow_forwardA water reservoir has the shape of a right circular cone with its circular base of radius R = 160 m at ground level (z = 0 m). Rain fills the reservoir over the winter; when full, the reservoir depth is h = summer, water from the reservoir is pumped up to ground level for drinking, irrigation, etc. At the end of the summer, the volume of water left in the reservoir is only 3/7 of its full capacity. %3D 70 m. In (a) Find the depth of the water in the reservoir at the end of the summer. Answer: Depth = 52.776 m (b) Find the total work done to lift water out of the reservoir during the summer. Answer: W = 54461207640 J. (Recall the density of fresh water: p = 1000 kg/m.)arrow_forwardThe total time required to bake a loaf of bread, B, is a function of the temperature of the oven, T, and the size of the loaf, L. a) What is the total differential of this time-required-to-bake function? In other words, given B = f (T, L) what is dB?b) However, the size parameter, L, is really a function of two variables: M the mass of the loaf and A the average cross-sectional area of the loaf. What is the total differential for the time-required-to-bake function now? i.e. given B = f (T, M, A) what is dB?c) Following some experimentation, you determine the functional form of B is given by the expression below. In this expression, T, M, and A are the same as in b) and k is an experimentally measured constant. B = kMA2 / T2 1) Find the three partial derivatives for B. 2) Substitute the partial derivatives you found into the total differential from a) and provide a 1–2 sentence interpretation for…arrow_forward
- The Deligne Dam on the Cayley River is built so that the wall facing the water is shaped like the region above the curve y 0.3x² and below the line y 180. (Here, distances are measured in meters.) The water level is 36 meters below the top of the dam. Find the force (in Newtons) exerted on the dam by water pressure. (Water has a density of 1000kg/m³, and the acceleration of gravity is 9.8m/sec².) Answer:arrow_forwardThe density of air changes with height. Under some conditions density p, depends on height z, and temperature T according to the following equation where Po and A are both constants. A meteorological balloon ascends (i.e., starts at z = 1 and gains height) over the course of several hours. Complete parts (a) and (b) below. Az P(z,T) = Po e ..... dz v) and that the temperature changes over time (i.e., that T is given by a function T(t)), derive, using the chain rule, an expression for the rate of change of air density, (a) Assuming that the balloon ascends at a speed v (i.e., dt as measured by the weather balloon. Choose the correct answer below. dp Az dT O A. dt T2 dt dp %3D dt Az dT dp С. dt %3D + T dt dp Az) dT O D. dt T2) dt (b) Assume that v = 1, Po = 1, and A = 1 and that when t= 0, T= 1. Are there any conditions under which the density, as measured by the balloon will not change in time? That is, find a differential equation that T must satisfy, if dp = 0, and solve this…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Evaluating Indefinite Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=-xHA2RjVkwY;License: Standard YouTube License, CC-BY
Calculus - Lesson 16 | Indefinite and Definite Integrals | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=bMnMzNKL9Ks;License: Standard YouTube License, CC-BY