EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 15.7, Problem 30P
(a)
To determine
The air–fuel ratio.
(b)
To determine
The percentage of theoretical air used.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
C,Hs is burned in an engine with a fuel-rich air-fuel ratio. Dry analysis of the exhaust gives
the following volume percents: CO, 14.95%, C,H, 0.75%, CO 0%.
H = 0%, O, 0%, with the rest being
N. Higher heating value of this fuel is Quav 46.9 MJ/kg. Write the balanced chemical
equation for one mole of this fuel at these conditions
Calculate:
(a) Air-fuel ratio.
(b) Equivalence ratio.
(c) Lower heating value of fuel. [MJ/kg]
(d) Energy released when one kg of this fuel is burned in the engine with a combustion
efficiency of 98%. [MJ]
H.W.3.5 Propylene (C3H6) is burned with 50 percent excess air during a combustion
process. Assuming complete combustion and a total pressure of 105 kPa, determine
(a) the air-fuel ratio and (b) the temperature at which the water vapor in the products
will start condensing (c) the product analysis based on volume and mass.
Question No. 11: One kmol of octane C8H18 is burned with air that contains 20kmol of O2. Assuming the product contains only CO2, H20, 02and N2, determine the mol number of each gas in the products and the air-fuel ratio for this combustion process.
Chapter 15 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 15.7 - How does the presence of N2 in air affect the...Ch. 15.7 - Prob. 2PCh. 15.7 - Prob. 3PCh. 15.7 - Is the airfuel ratio expressed on a mole basis...Ch. 15.7 - Prob. 5PCh. 15.7 - Prob. 6PCh. 15.7 - Prob. 7PCh. 15.7 - What does 100 percent theoretical air represent?Ch. 15.7 - Consider a fuel that is burned with (a) 130...Ch. 15.7 - Are complete combustion and theoretical combustion...
Ch. 15.7 - What are the causes of incomplete combustion?Ch. 15.7 - Which is more likely to be found in the products...Ch. 15.7 - Methane (CH4) is burned with the stoichiometric...Ch. 15.7 - Prob. 14PCh. 15.7 - n-Butane fuel (C4H10) is burned with the...Ch. 15.7 - Prob. 16PCh. 15.7 - Prob. 17PCh. 15.7 - 15–18 n-Octane (C8H18) is burned with 50 percent...Ch. 15.7 - In a combustion chamber, ethane (C2H6) is burned...Ch. 15.7 - Prob. 20PCh. 15.7 - Prob. 21PCh. 15.7 - 15–22 One kilogram of butane (C4H10) is burned...Ch. 15.7 - 15–23E One lbm of butane (C4H10) is burned with 25...Ch. 15.7 - Prob. 24PCh. 15.7 - A fuel mixture of 60 percent by mass methane (CH4)...Ch. 15.7 - A certain natural gas has the following volumetric...Ch. 15.7 - Prob. 27PCh. 15.7 - A gaseous fuel with a volumetric analysis of 45...Ch. 15.7 - Prob. 30PCh. 15.7 - 15–31 Octane (C8H18) is burned with dry air. The...Ch. 15.7 - Prob. 32PCh. 15.7 - Prob. 33PCh. 15.7 - Prob. 34PCh. 15.7 - Prob. 35PCh. 15.7 - Prob. 36PCh. 15.7 - Prob. 37PCh. 15.7 - Prob. 38PCh. 15.7 - Prob. 39PCh. 15.7 - Prob. 40PCh. 15.7 - Prob. 41PCh. 15.7 - Prob. 42PCh. 15.7 - Prob. 44PCh. 15.7 - Repeat Prob. 1546 for liquid octane (C8H18).Ch. 15.7 - Ethane (C2H6) is burned at atmospheric pressure...Ch. 15.7 - Reconsider Prob. 1550. What minimum pressure of...Ch. 15.7 - Calculate the HHV and LHV of gaseous n-octane fuel...Ch. 15.7 - Prob. 49PCh. 15.7 - Prob. 50PCh. 15.7 - Consider a complete combustion process during...Ch. 15.7 - Prob. 53PCh. 15.7 - Prob. 54PCh. 15.7 - Propane fuel (C3H8) is burned with an airfuel...Ch. 15.7 - 15–56 Hydrogen (H2) is burned completely with the...Ch. 15.7 - Prob. 57PCh. 15.7 - Prob. 58PCh. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Prob. 61PCh. 15.7 - Liquid ethyl alcohol [C2H5OH(l)] at 25C is burned...Ch. 15.7 - Prob. 63PCh. 15.7 - Prob. 64PCh. 15.7 - A constant-volume tank contains a mixture of 120 g...Ch. 15.7 - Prob. 67PCh. 15.7 - Prob. 68PCh. 15.7 - Prob. 69PCh. 15.7 - A fuel is completely burned first with the...Ch. 15.7 - Prob. 71PCh. 15.7 - Acetylene gas (C2H2) at 25C is burned during a...Ch. 15.7 - Octane gas (C8H18) at 25C is burned steadily with...Ch. 15.7 - Express the increase of entropy principle for...Ch. 15.7 - Prob. 81PCh. 15.7 - What does the Gibbs function of formation gf of a...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Benzene gas (C6H6) at 1 atm and 77F is burned...Ch. 15.7 - Prob. 87PCh. 15.7 - Prob. 88PCh. 15.7 - A steady-flow combustion chamber is supplied with...Ch. 15.7 - Prob. 91RPCh. 15.7 - 15–92 A gaseous fuel with 80 percent CH4, 15...Ch. 15.7 - Prob. 93RPCh. 15.7 - Prob. 94RPCh. 15.7 - Prob. 95RPCh. 15.7 - Prob. 96RPCh. 15.7 - Prob. 97RPCh. 15.7 - Prob. 98RPCh. 15.7 - Prob. 99RPCh. 15.7 - Prob. 100RPCh. 15.7 - A 6-m3 rigid tank initially contains a mixture of...Ch. 15.7 - Prob. 102RPCh. 15.7 - Propane gas (C3H8) enters a steady-flow combustion...Ch. 15.7 - Determine the highest possible temperature that...Ch. 15.7 - Prob. 106RPCh. 15.7 - Prob. 107RPCh. 15.7 - A steam boiler heats liquid water at 200C to...Ch. 15.7 - Repeat Prob. 15112 using a coal from Utah that has...Ch. 15.7 - Liquid octane (C8H18) enters a steady-flow...Ch. 15.7 - Prob. 111RPCh. 15.7 - Prob. 112RPCh. 15.7 - Prob. 113RPCh. 15.7 - Consider the combustion of a mixture of an...Ch. 15.7 - A fuel is burned steadily in a combustion chamber....Ch. 15.7 - A fuel is burned with 70 percent theoretical air....Ch. 15.7 - Prob. 123FEPCh. 15.7 - One kmol of methane (CH4) is burned with an...Ch. 15.7 - An equimolar mixture of carbon dioxide and water...Ch. 15.7 - The higher heating value of a hydrocarbon fuel...Ch. 15.7 - Acetylene gas (C2H2) is burned completely during a...Ch. 15.7 - Prob. 129FEPCh. 15.7 - A fuel is burned during a steady-flow combustion...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Liquid octane is burned completely with 75% excess air. Determine the air-fuel ratio for this combustion process.arrow_forwardi need the answer quicklyarrow_forwardQ6 Octan fuel (C8H18) is burned with air in a combustion test, and avolumetric analysis reveals the following composition of the products: 11.0% CO₂ اظهر - بین 3.6% O2 and 1.5% Co. Compute the actual air-fuel ratio used during the test and the percent theoretical air used.)arrow_forward
- Methanol (CH3OH) is burned with 50% excess air. Write the balanced reaction equations for complete and actual combustion, and then determine (a) the actual air-to-fuel ratio, and (b) the enthalpy of the complete combustion of Methanol at 25°C and 1 atm assuming H₂O in the products is in the liquid form. N₁ hc=Hp-HR=Nphp-ENRIR TABLE 32 Standard enthalpies of formation Species State! 0₁ Gas Gav Ga Gas Gas Gas H₁ C. Co, но 1,0 CO Useful relations: Mair 123 ful C,H, CH,OH CH,OH Liqind Gas Gas Gas Gas Liquid Gas Liquid AF C₂B₁ сн.. At 298.15 K (25 C) and 1 aus Ah,, MJ/kmol 0 0 0 0 -393.52 241.83 285.84 110.54 -74.87 -101.85 -201.17 238.58 208.45 249.35arrow_forward5. One Kmol of C3H1S is burned with 100% air containing 25 Kmol of O2. Determine the air- fuel ratio for this combustion process.arrow_forwardAn analysis of the dry exhaust gas from an engine burning Benzole shows 15% Carbon Dioxide present by volume. The Benzole contains 90% C and 10% H₂ by mass. Assuming complete combustion, determine the air/fuel ratio used.arrow_forward
- Isooctane is burned with theoretical air with 20% excess air during the combustion process in a small 3 – cylinder turbocharged automobile engine. Calculate: 1. Air – fuel ratio 2. Fuel – air ration 3. Equivalence ratio Stoichiometric reaction: _C3H8 + 02 + N2 → _CO2+ _H,0 + N2 With 20% excess air: _C3H8 + 02 + N2 →, CO2 + _H20 +. N2arrow_forwardOne mole of C3H8, is burned with an unknown amount of air during a combustion process. An analysis of the combustion products shows that the combustion is complete and there 3 moles of free O2, in the products. Determine; - a. the actual air-fuel ration b. the equivalence ratio c. the percentage of theoretical air used during this process.arrow_forwardAcetylene (C2H2) is burned with the stoichiometric amount of air during a combustion process. Assume complete combustion. Part A Determine the air-fuel ratio on a mass basis. Part B Determine the air-fuel ratio on a mole basis. Part C What-if scenario: What would the air to fuel ratio on a mass basis be if propene (C3H6) was burned instead of acetylene?arrow_forward
- Isooctane is burned with 12% insufficient air.Determine: (a) amount of moles of air needed for this combustion(b) mass of carbon monoxide in the products of combustionarrow_forwardA hydrocarbon with an unknown composition (CxHy) is burned in dry air. The products are 9.6%CO2, 7.3%O2 and 83.1%N2. Determine the x/y ratio and the percentage theoretical air used.arrow_forwardEthanol Fuel C2H6O is burned with atmospheric air in a stoichiometric ratio. The mole fraction of H2O in the products is: Select one: O a. 0.857 O b. 0.1843 O c. 0.5415 O d. 0.6124arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License