Liquid octane (C8H18) enters a steady-flow combustion chamber at 25°C and 8 atm at a rate of 0.8 kg/min. It is burned with 200 percent excess air that is compressed and preheated to 500 K and 8 atm before entering the combustion chamber. After combustion, the products enter an adiabatic turbine at 1300 K and 8 atm and leave at 950 K and 2 atm. Assuming complete combustion and T0 = 25°C, determine (a) the heat transfer rate from the combustion chamber, (b) the power output of the turbine, and (c) the reversible work and exergy destruction for the entire process.
(a)
The rate of heat transfer from the combustion chamber.
Answer to Problem 110RP
The rate of heat transfer from the combustion chamber is
Explanation of Solution
Write the energy balance equation using steady-flow equation.
Here, the total energy entering the system is
Substitute
Here, the enthalpy of formation for product is
Calculate the molar mass of the
Here, the number of carbon atoms is
Determine the rate of mole flow rates of the product.
Here, the mass flow rate is
Determine the heat transfer rate from the combustion chamber.
Conclusion:
Perform unit conversion of temperature at state 1 from degree Celsius to Kelvin.
For air temperature enter in the combustion chamber,
Write the combustion equation of 1 kmol for
Here, liquid octane is
Express the stoichiometric coefficient of air by
Substitute
Refer Appendix Table A-18, A-19, A-20, and A-23, obtain the enthalpy of formation, at 298 K, 500 K, 950 K, and 1500 K for
Substance | |||||
-249,950 | --- | --- | --- | --- | |
0 | 14,770 | 8682 | 42,033 | 26,652 | |
0 | 14,581 | 8669 | 40,170 | 28,501 | |
-241,820 | --- | 9904 | 48,807 | 33,841 | |
-393,520 | --- | 9364 | 59,552 | 40,070 |
Refer Equation (X), and write the number of moles of reactants.
Here, number of moles of reactant octane, oxygen and nitrogen is
Refer Equation (X), and write the number of moles of products.
Here, number of moles of product carbon dioxide, water, oxygen and nitrogen is
Substitute the value from table (I) of substance in Equation (II).
Therefore the heat transfer for
Substitute 8 for
Substitute
Substitute
Thus, the rate of heat transfer from the combustion chamber is
(b)
The rate of power output of the turbine.
Answer to Problem 110RP
The rate of power output of the turbine is
Explanation of Solution
Determine the power output of the adiabatic turbine from the steady-flow energy balance equation for non-reacting gas mixture.
Determine the rate of work done of the adiabatic turbine.
Conclusion:
Substitute the value from table (I) of substance in Equation (XI).
Substitute
Thus, the rate of power output of the turbine is
(c)
The exergy destruction rate from the combustion chamber.
The rate of reversible work done in the combustion chamber.
Answer to Problem 110RP
The exergy destruction rate from the combustion chamber is
The rate of reversible work done in the combustion chamber is
Explanation of Solution
Write the expression for entropy generation during this process.
Write the combustion equation of Equation (VI)
Here, the entropy of the product is
Determine the entropy at the partial pressure of the components.
Here, the partial pressure is
Determine the entropy generation rate from the combustion chamber.
Write the expression for exergy destruction during this process.
Here, the thermodynamic temperature of the surrounding is
Determine the rate of the reversible work done of the combustion chamber.
Conclusion:
Refer Equation (XV) for reactant and product to calculation the entropy in tabular form as:
For reactant entropy,
Substance |
(T, 1 atm) | ||||
1 | 1.00 | 360.79 | 17.288 | 360.79 | |
37.5 | 0.21 | 220.589 | 4.313 | 8,110.34 | |
141 | 0.79 | 206.630 | 15.329 | 26,973.44 | |
For product entropy,
Substance |
(T, 1 atm) | ||||
8 | 0.0437 | 266.444 | -20.260 | 2,293.63 | |
9 | 0.0490 | 230.499 | -19.281 | 2,248.02 | |
25 | 0.1366 | 241.689 | -10.787 | 6,311.90 | |
141 | 0.7705 | 226.389 | 3.595 | 31,413.93 | |
Substitute
Substitute
Substitute
Thus, the exergy destruction rate from the combustion chamber is
Substitute
Thus, the rate of reversible work done in the combustion chamber is
Want to see more full solutions like this?
Chapter 15 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- 20. [Ans. 9; 71.8 mm] A semi-elliptical laminated spring is made of 50 mm wide and 3 mm thick plates. The length between the supports is 650 mm and the width of the band is 60 mm. The spring has two full length leaves and five graduated leaves. If the spring carries a central load of 1600 N, find: 1. Maximum stress in full length and graduated leaves for an initial condition of no stress in the leaves. 2. The maximum stress if the initial stress is provided to cause equal stress when loaded. [Ans. 590 MPa ; 390 MPa ; 450 MPa ; 54 mm] 3. The deflection in parts (1) and (2).arrow_forwardQ6/ A helical square section spring is set inside another, the outer spring having a free length of 35 mm greater than the inner spring. The dimensions of each spring are as follows: Mean diameter (mm) Side of square section (mm) Active turns Outer Inner Spring Spring 120 70 8 7 20 15 Determine the (1) Maximum deflection of the two springs and (2) Equivalent spring rate of the two springs after sufficient load has been applied to deflect the outer spring 60 mm. Use G = 83 GN/m².arrow_forwardQ2/ The bumper springs of a railway carriage are to be made of rectangular section wire. The ratio of the longer side of the wire to its shorter side is 1.5, and the ratio of mean diameter of spring to the longer side of wire is nearly equal to 6. Three such springs are required to bring to rest a carriage weighing 25 kN moving with a velocity of 75 m/min with a maximum deflection of 200 mm. Determine the sides of the rectangular section of the wire and the mean diameter of coils when the shorter side is parallel to the axis of the spring. The allowable shear stress is not to exceed 300 MPa and G = 84 kN/mm². Q6/ A belicalarrow_forward
- 11. A load of 2 kN is dropped axially on a close coiled helical spring, from a height of 250 mm. The spring has 20 effective turns, and it is made of 25 mm diameter wire. The spring index is 8. Find the maximum shear stress induced in the spring and the amount of compression produced. The modulus of rigidity for the material of the spring wire is 84 kN/mm². [Ans. 287 MPa; 290 mm]arrow_forwardWhat is the reason for this composition?arrow_forwardHomework: ANOVA Table for followed design B AB Dr -1 -1 1 (15.18,12) 1 -1 -1 (45.48.51) -1 1 -1 (25,28,19) 1 1 (75.75,81)arrow_forward
- S B Pin 6 mm Garrow_forwardMid-Term Exam 2024/2025 Post graduate/Applied Mechanics- Metallurgy Q1/ State the type of fault in the following case, and state the structure in which it will appear. АВСАВСВАСВАСАВСАВСarrow_forwardالثانية Babakt Momentum equation for Boundary Layer S SS -Txfriction dray Momentum equation for Boundary Layer What laws are important for resolving issues 2 How to draw. 3 What's Point about this.arrow_forward
- R αι g The system given on the left, consists of three pulleys and the depicted vertical ropes. Given: ri J₁, m1 R = 2r; απ r2, J2, m₂ m1; m2; M3 J1 J2 J3 J3, m3 a) Determine the radii 2 and 3.arrow_forwardB: Solid rotating shaft used in the boat with high speed shown in Figure. The amount of power transmitted at the greatest torque is 224 kW with 130 r.p.m. Used DE-Goodman theory to determine the shaft diameter. Take the shaft material is annealed AISI 1030, the endurance limit of 18.86 kpsi and a factor of safety 1. Which criterion is more conservative? Note: all dimensions in mm. 1 AA Motor 300 Thrust Bearing Sprocket 100 9750 เอarrow_forwardQ2: The plate material of a pressure vessel is AISI 1050 QT 205 °C. The plate is rolled to a diameter of 1.2 m. The two sides of the plate are connected via a riveted joint as shown below. If the rivet material is G10500 with HB=197 and all rivet sizes M31. Find the required rivet size when the pressure vessel is subjected to an internal pressure of 500 MPa. Take safety factor = 2. 1.2m A B' A Chope olm 10.5 0.23 hopearrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY