Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 36 . f ( x , y ) = 12 − x 2 − y 2 ; P ( − 1 , − 1 / 3 )
Interpreting directional derivatives A function f and a point P are given. Let θ correspond to the direction of the directional derivative. a. Find the gradient and evaluate it at P. b. Find the angles θ ( with respect to the positive x-axis ) associated with the directions of maximum increase, maximum decrease, and zero change. c. Write the directional derivative at P as a function of θ; call this function g. d. Find the value of θ that maximizes g ( θ ) and find the maximum value. e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient . 36 . f ( x , y ) = 12 − x 2 − y 2 ; P ( − 1 , − 1 / 3 )
Interpreting directional derivativesA function f and a point P are given. Let θ correspond to the direction of the directional derivative.
a. Find the gradient and evaluate it at P.
b. Find the angles θ (with respect to the positive x-axis) associated with the directions of maximum increase, maximum decrease, and zero change.
c. Write the directional derivative at P as a function of θ; call this function g.
d. Find the value of θ that maximizes g(θ) and find the maximum value.
e. Verify that the value of θ that maximizes g corresponds to the direction of the gradient. Verify that the maximum value of g equals the magnitude of the gradient.
36.
f
(
x
,
y
)
=
12
−
x
2
−
y
2
;
P
(
−
1
,
−
1
/
3
)
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Automobile Department
Subject :Engineering Analysis
Time: 2 hour
Date:27-11-2022
کورس اول تحليلات
تعمیر )
1st month exam / 1st semester (2022-2023)/11/27
Note: Answer all questions,all questions have same degree.
Q1/: Find the following for three only.
1-
4s
C-1
(+2-3)2 (219) 3.0 (6+1)) (+3+5)
(82+28-3),2-
,3-
2-1
4-
Q2/:Determine the Laplace transform of the function t sint.
Q3/: Find the Laplace transform of
1,
0≤t<2,
-2t+1,
2≤t<3,
f(t) =
3t,
t-1,
3≤t 5,
t≥ 5
Q4: Find the Fourier series corresponding to the function
0
-5
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Subject :Engineering Analysis
Time: 80 min
Date:11-12-2022
Automobile Department
2nd month exam / 1" semester (2022-2023)
Note: Answer all questions,all questions have same degree.
کورس اول
شعر 3
Q1/: Use a Power series to solve the differential equation:
y" - xy = 0
Q2/:Evaluate using Cauchy's residue theorem,
sinnz²+cosz²
dz, where C is z = 3
(z-1)(z-2)
Q3/:Evaluate
dz
(z²+4)2
Where C is the circle /z-i/-2,using Cauchy's residue theorem.
Examiner: Dr. Wisam N. Hassan
Ministry of Higher Education &
Scientific Research
Babylon University
College of Engineering -
Al musayab
Subject :Engineering Analysis
Time: 80 min
Date:11-12-2022
Automobile Department
2nd month exam / 1" semester (2022-2023)
Note: Answer all questions,all questions have same degree.
کورس اول
شعر 3
Q1/: Use a Power series to solve the differential equation:
y" - xy = 0
Q2/:Evaluate using Cauchy's residue theorem,
sinnz²+cosz²
dz, where C is z = 3
(z-1)(z-2)
Q3/:Evaluate
dz
(z²+4)2
Where C is the circle /z-i/-2,using Cauchy's residue theorem.
Examiner: Dr. Wisam N. Hassan
Chapter 15 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
University Calculus: Early Transcendentals (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Differential Equation | MIT 18.01SC Single Variable Calculus, Fall 2010; Author: MIT OpenCourseWare;https://www.youtube.com/watch?v=HaOHUfymsuk;License: Standard YouTube License, CC-BY