Bundle: Statistics for Business & Economics, Loose-Leaf Version, 13th + MindTap Business Statistics with XLSTAT, 1 term (6 months) Printed Access Card
13th Edition
ISBN: 9781337148092
Author: David R. Anderson, Dennis J. Sweeney, Thomas A. Williams, Jeffrey D. Camm, James J. Cochran
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15.5, Problem 26E
In exercise 10, data showing the values of several pitching statistics for a random sample of 20 pitchers from the American League of Major League Baseball were provided. In part (c) of this exercise an estimated regression equation was developed to predict the average number of runs given up per inning pitched (R/IP) given the average number of strikeouts per inning pitched (SO/IP) and the average number of home runs per inning pitched (HR/IP).
- a. Use the F test to determine the overall significance of the relationship. What is your conclusion at the .05 level of significance?
- b. Use the t test to determine the significance of each independent variable. What is your conclusion at the .05 level of significance?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A regression model to predict Y, the state burglary rate per 100,000 people, used the following four state predictors: X1 = median age,
X2 = number of bankruptcies per 1,000 population, X3 = federal expenditures per capita (a leading predictor), and X4 = high school
graduation percentage.
Click here for the Excel Data File
(a) Using the sample size of 45 people, calculate the tcalc and p-value in the table given below. (Negative values should be indicated
by a minus sign. Leave no cells blank - be certain to enter "0" wherever required. Round your t-values to 3 decimal places and p-
values to 4 decimal places.)
Predictor
Intercept
AgeMed
Coefficient
SE
tcalc
p-value
4,641.0430
798.0634
-28.8630
12.4684
Bankrupt
20.1604
12.1079
FedSpend
HSGrad%
-0.0181
0.0181
-30.3196
7.1136
(b-1) What is the critical value of Student's tin Appendix D for a two-tailed test at a = .01? (Round your answer to 3 decimal places.)
-value =
A regression model to predict Y, the state burglary rate per 100,000 people, used the following four state predictors: X₁ = median age,
X₂ = number of bankruptcies per 1,000 population, X3 = federal expenditures per capita (a leading predictor), and X4 = high school
graduation percentage.
Click here for the Excel Data File
(a) Using the sample size of 50 people, calculate the tcalc and p-value in the table given below. (Negative values should be indicated
by a minus sign. Leave no cells blank - be certain to enter "0" wherever required. Round your answers to 4 decimal places.)
Predictor
Intercept
AgeMed
Bankrupt
FedSpend
HSGrad%
Coefficient
t-value =
4,198.5808
-27.3540
17.4893
-0.0124
-29.0314
SE
799.3395
12.5687
12.4033
0.0176
7.1268
tcalc
p-value
(b-1) What is the critical value of Student's t in Appendix D for a two-tailed test at a = .01? (Round your answer to 3 decimal places.)
A regression model to predict Y, the state burglary rate per 100,000 people, used the following four state predictors: X₁ = median age,
X₂ = number of bankruptcies per 1.000 population, X3 = federal expenditures per capita (a leading predictor), and X4 = high school
graduation percentage.
Click here for the Excel Data File
(a) Using the sample size of 50 people, calculate the calc and p-value in the table given below. (Negative values should be indicated
by a minus sign. Leave no cells blank - be certain to enter "0" wherever required. Round your answers to 4 decimal places.)
Predictor
Intercept
AgeMed
Bankrupt
FedSpend
HSGrad%
Answer is complete but not entirely correct.
*calc
5.2526
-2.1764✔✔
1.4101✔
Coefficient
4,198.5808
-27.3540
17.4893
-0.0124
-29.0314
SE
799.3395
12.5687
12.4033
0.0176
7.1268
-0.7045
-4.0736
p-value
0.0000
0.0348
0.2935
0.4848
0.0002
Chapter 15 Solutions
Bundle: Statistics for Business & Economics, Loose-Leaf Version, 13th + MindTap Business Statistics with XLSTAT, 1 term (6 months) Printed Access Card
Ch. 15.2 - The estimated regression equation for a model...Ch. 15.2 - Consider the following data for a dependent...Ch. 15.2 - In a regression analysis involving 30...Ch. 15.2 - A shoe store developed the following estimated...Ch. 15.2 - The owner of Showtime Movie Theaters, Inc., would...Ch. 15.2 - The National Football League (NFL) records a...Ch. 15.2 - PC Magazine provided ratings for several...Ch. 15.2 - The Cond Nast Traveler Gold List provides ratings...Ch. 15.2 - The Professional Golfers Association (PGA)...Ch. 15.2 - Prob. 10E
Ch. 15.3 - In exercise 1, the following estimated regression...Ch. 15.3 - Prob. 12ECh. 15.3 - In exercise 3, the following estimated regression...Ch. 15.3 - In exercise 4, the following estimated regression...Ch. 15.3 - In exercise 5, the owner of Showtime Movie...Ch. 15.3 - In exercise 6, data were given on the average...Ch. 15.3 - Prob. 17ECh. 15.3 - Refer to exercise 10, where Major League Baseball...Ch. 15.5 - In exercise 1, the following estimated regression...Ch. 15.5 - Refer to the data presented in exercise 2. The...Ch. 15.5 - The following estimated regression equation was...Ch. 15.5 - In exercise 4, the following estimated regression...Ch. 15.5 - Prob. 23ECh. 15.5 - Prob. 24ECh. 15.5 - The Cond Nast Traveler Gold List for 2012 provided...Ch. 15.5 - In exercise 10, data showing the values of several...Ch. 15.6 - In exercise 1, the following estimated regression...Ch. 15.6 - Refer to the data in exercise 2. The estimated...Ch. 15.6 - In exercise 5, the owner of Showtime Movie...Ch. 15.6 - In exercise 24, an estimated regression equation...Ch. 15.6 - The American Association of Individual Investors...Ch. 15.7 - Consider a regression study involving a dependent...Ch. 15.7 - Consider a regression study involving a dependent...Ch. 15.7 - Management proposed the following regression model...Ch. 15.7 - Refer to the Johnson Filtration problem introduced...Ch. 15.7 - This problem is an extension of the situation...Ch. 15.7 - The Consumer Reports Restaurant Customer...Ch. 15.7 - A 10-year study conducted by the American Heart...Ch. 15.8 - Data for two variables, x and y, follow. xi 1 2 3...Ch. 15.8 - Data for two variables, x and y, follow. xi 22 24...Ch. 15.8 - Exercise 5 gave the following data on weekly gross...Ch. 15.8 - The following data show the curb weight,...Ch. 15.8 - The Ladies Professional Golfers Association (LPGA)...Ch. 15.9 - Refer to the Simmons Stores example introduced in...Ch. 15.9 - In Table 15.12 we provided estimates of the...Ch. 15.9 - Community Bank would like to increase the number...Ch. 15.9 - Over the past few years the percentage of students...Ch. 15.9 - The Tire Rack maintains an independent consumer...Ch. 15 - The admissions officer for Clearwater College...Ch. 15 - The personnel director for Electronics Associates...Ch. 15 - A partial computer output from a regression...Ch. 15 - Recall that in exercise 49, the admissions officer...Ch. 15 - Recall that in exercise 50 the personnel director...Ch. 15 - The Tire Rack, Americas leading online distributor...Ch. 15 - The Department of Energy and the U.S....Ch. 15 - A portion of a data set containing information for...Ch. 15 - Fortune magazine publishes an annual list of the...Ch. 15 - Consumer Research, Inc., is an independent agency...Ch. 15 - Matt Kenseth won the 2012 Daytona 500, the most...Ch. 15 - Finding the Best Car Value When trying to decide...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- Find the equation of the regression line for the following data set. x 1 2 3 y 0 3 4arrow_forwardFor the following exercises, use Table 4 which shows the percent of unemployed persons 25 years or older who are college graduates in a particular city, by year. Based on the set of data given in Table 5, calculate the regression line using a calculator or other technology tool, and determine the correlation coefficient. Round to three decimal places of accuracyarrow_forwardConsider the SPSS regression output below. The dependent variable (Y) is the level of happiness felt by individuals. The dependent variable was measured in the following manner: 1= very unhappy, 2= somewhat unhappy, 3=neither unhappy nor happy, 4= somewhat happy, 5= very happy. The following four factors are the independent variables: highest year of school completed, respondent’s age, number of children of the respondent, and total family income. The researcher acquired data from 1,457 randomly selected Americans and ran a multiple regression. The regression results are presented below: Model Summary Model R R Square Adjusted R Square Std. Error of the Estimate 1 .215a .046 .043 .72476 a. Predictors: (Constant), TOTAL FAMILY INCOME, AGE OF RESPONDENT, NUMBER OF CHILDREN, SUBJECTIVE CLASS IDENTIFICATION, HIGHEST YEAR OF SCHOOL COMPLETED Coefficientsa Model Unstandardized Coefficients Standardized Coefficients t Sig.…arrow_forward
- You have estimated a multiple regression model with 6 explanatory variables and an intercept from a sample with 46 observations. What is the critical value of the test statistic (tc) if you want to perform a test for the significance of a single right-hand side (explanatory) variable at α = 0.05? a.) 2.023 b.) 2.708 c.) 2.423 d.) 2.704arrow_forwardTwo measures of a baseball player's effectiveness as a hitter are the number of hits he makes in a season and thenumber of times he "bats in" a run (knows as "Runs Batted In" or RBIs). Can we predict a batter's RBIs from hisMajor League Baseball batters in 2017.hits? Below is numerical and graphical output from a computer regression of RBIs on Hits for 12 randomly selected Major League Baseball batters in 2017. Assume that the conditions for inference have been satisfied.(a) Do these data provide convincing evidence that there is a linear relationship between RBIs and Flits for MajorLeague Baseball batters in 2017? (b) Construct a 95% confidence interval for the slope of the population regression line for predicting RBIs from Hits.arrow_forwardA random sample of 9 statistics students produced the following data, Midterm Exam Score, x Final Exam Score, y 81 49 62 23 76 84 26 58 96 33 38 36 10 15 15 83 81 28 where x measures the midterm exam score and y measures the final exam score. What is the estimate of the y = a x + b regression intercept coefficient?arrow_forward
- I need help finding the answers for A,B,and Carrow_forwardThe data below are ages and systolic blood pressures (measured in millimeters of mercury) of 9 randomly selected adults. a)Identify the null and alternative hypotheses b)Find the linear correlation coefficient. Round the answer to 3 decimal places. c)Find the test statistics d)Find the p-value andcritical value e)Reject H0" or "Do not reject H0"? f)State the conclusion. g)Find the equation of the regression line for the given data. Round the regression line values to 2 decimal places. h)What would be the predicted pressure if the age was 60? Round the predicted pressure to the nearest whole number.arrow_forwardProvide a detailed interpretation analysis of the regression results below. Pay attention to the main tested variables, model fit characteristics (R 2 ) and number of respondents in the sample. State what is dependent and what are independent variables. Was the hypotheses rejected or confirmed? a) H1: If a woman has a job she will have less children born b) H2: The younger a woman got married the more children she has c) H3: Education positively affects number of children to havearrow_forward
- Q: The dataset posted below lists a sample of months and the advertising budget (in hundreds of dollars) for TV, radio and newspaper advertisements. Also included is whether a coupon was published for that month and the resulting sales (in thousands of dollars). a) Develop a multiple regression model predicting the sales based off the four predictor variables: TV, radio, and newspaper advertising budget and whether a coupon is used. Recode Coupon as 0 = No and 1 = Yes. Report the estimated regression equation (Solve in Excel) TV ($100) radio ($100) newspaper ($100) Coupon sales ($1000) 0.7 39.6 8.7 No 1.6 230.1 37.8 69.2 No 22.1 4.1 11.6 5.7 Yes 3.2 44.5 39.3 45.1 No 10.4 250.9 36.5 72.3 No 22.2 8.6 2.1 1 No 4.8 17.2 45.9 69.3 Yes 9.3 104.6 5.7 34.4 No 10.4 216.8 43.9 27.2 Yes 22.3 5.4 29.9 9.4 No 5.3 69 9.3 0.9 No 9.3 70.6 16 40.8 No 10.5 151.5 41.3 58.5 No 18.5 195.4 47.7 52.9 Yes 22.4 13.1 0.4 25.6 Yes 5.3 76.4 0.8…arrow_forwardThe local utility company surveys 12 randomly selected customers. For each survey participant, the company collects the following: annual electric bill (in dollars) and home size (in square feet). Output from a regression analysis appears below: Bill 13.45 + 4.39*Size Coefficients Estimate Std. Error (Intercept) 13.45 Size 4.39 0.54 0.2 We are 90% confident that the mean annual electric bill increases by between dollars and dollars for every additional square foot in home size. Round your answers to three decimal places and enter in increasing order.arrow_forwardA marketing manager for Costco, is trying to determine if there is a relationship between shelf space (in feet) and sales (in hundreds of dollars). To do this, the manager selected the top 12 producing locations. The regression results produced the following adjusted R2 values: Model 1: 0.8874 and Model 2: 0.6028. Which model is a better prediction of the outcome? Model 1 Model 2 Both are equally suitable Neither model explains anything about the dependent variablearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Functions and Change: A Modeling Approach to Coll...
Algebra
ISBN:9781337111348
Author:Bruce Crauder, Benny Evans, Alan Noell
Publisher:Cengage Learning
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY