(a)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
To Identify: The number of proton signals the structure would exhibits.
(b)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(c)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(d)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(e)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(f)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(g)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(h)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(i)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(j)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(k)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.
(l)
Interpretation: For a given set of molecules the number of signals expected in
Concept Introduction:
Homotopic: If the protons are interchangeable through rotational symmetry, then the protons are chemically equivalent and termed as homotopic.
Enantiotopic protons: If subjected protons in the molecule can be interchanged through rotational or reflection symmetry known as Enantiotopic protons and the protons are chemically equivalent.
Diastereotopic: If the protons are not interchangeable through either of the symmetry operations, then the protons are Diastereotopic; the protons are not chemically equivalent if a chiral center present in the molecule.
Replacement test: In the molecule replacing each one of the subjected protons with deuterium gives the two compounds are same; then the protons are chemically equivalent.

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
ORGANIC CHEMISTRYPKGDRL+MLCRL MDL
- Problem 6-29 Identify the functional groups in the following molecules, and show the polarity of each: (a) CH3CH2C=N CH, CH, COCH (c) CH3CCH2COCH3 NH2 (e) OCH3 (b) (d) O Problem 6-30 Identify the following reactions as additions, eliminations, substitutions, or rearrangements: (a) CH3CH2Br + NaCN CH3CH2CN ( + NaBr) Acid -OH (+ H2O) catalyst (b) + (c) Heat NO2 Light + 02N-NO2 (+ HNO2) (d)arrow_forwardPredict the organic product of Y that is formed in the reaction below, and draw the skeletal ("line") structures of the missing organic product. Please include all steps & drawings & explanations.arrow_forwardPlease choose the best reagents to complete the following reactionarrow_forward
- Problem 6-17 Look at the following energy diagram: Energy Reaction progress (a) Is AG for the reaction positive or negative? Label it on the diagram. (b) How many steps are involved in the reaction? (c) How many transition states are there? Label them on the diagram. Problem 6-19 What is the difference between a transition state and an intermediate? Problem 6-21 Draw an energy diagram for a two-step reaction with Keq > 1. Label the overall AG°, transition states, and intermediate. Is AG° positive or negative? Problem 6-23 Draw an energy diagram for a reaction with Keq = 1. What is the value of AG° in this reaction?arrow_forwardProblem 6-37 Draw the different monochlorinated constitutional isomers you would obtain by the radical chlorination of the following compounds. (b) (c) Problem 6-39 Show the structure of the carbocation that would result when each of the following alkenes reacts with an acid, H+. (a) (b) (c)arrow_forwardPlease draw the major product of this reaction. Ignore inorganic byproducts and the carboxylic side productarrow_forward
- predict the product formed by the reaction of one mole each of cyclohex-2-en-1-one and lithium diethylcuprate. Assume a hydrolysis step follows the additionarrow_forwardPlease handwriting for questions 1 and 3arrow_forwardIs (CH3)3NHBr an acidic or basic salt? What happens when dissolved in aqueous solution? Doesn't it lose a Br-? Does it interact with the water? Please advise.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





