
Concept explainers
The elliptical exercise machine has fixed axes of rotation at points A and E. Knowing that at the instant shown the flywheel AB has a constant angular velocity of 6 rad/s clockwise, determine (a) the angular acceleration of bar DEF, (b) the acceleration of point F.
Fig. P15.127 and P15.128

(a)
Angular acceleration of bar DEF.
Answer to Problem 15.128P
The angular acceleration of bar DEF is
Explanation of Solution
Given information:
Constant angular velocity of AB is
Point A and E are fixed.
The absolute value of point A:
The relative velocity of A with respect to B is defined as:
The absolute acceleration of point B is defined as:
The tangential acceleration is defined as:
The normal acceleration is defined as:
In above equations
Calculation:
Position vector of B relative to A:
Position vector of D relative to B:
Position vector of D relative to E:
Absolute velocity of point B:
Absolute velocity of point D:
We know that:
Substitute equation 1 into 2 and equate with 3:
Substitute:
Equate components:
Therefore:
Similarly:
But we know that:
Therefore, substitute equation 4 into 5 and equate with 6:
Substitute:
Solve further:
Equate components:
Solve above equations:
Conclusion:
The angular acceleration of bar DEF is

(b)
Acceleration of point F
Answer to Problem 15.128P
The acceleration of point F is
Explanation of Solution
Given information:
Constant angular velocity of AB is
Point A and E are fixed.
The absolute acceleration of point B is defined as
The tangential acceleration is defined as
The normal acceleration is defined as
In above equations
Calculation:
According to sub part a
Absolute acceleration of point F
We know that
Therefore
Substitute
Then
Find the magnitude and the angle
Conclusion:
The acceleration of point F is
Want to see more full solutions like this?
Chapter 15 Solutions
VECTOR MECH...,DYNAMICS(LOOSE)-W/ACCESS
- Q5:(? Design the duct system of the figure below by using the balanced pressure method. The velocity in the duct attached to the AHU must not exceed 5m/s. The pressure loss for each diffuser is equal to 10Pa. 100CFM 100CFM 100CFM ☑ ☑ 40m AHU -16m- 8m- -12m- 57m 250CFM 40m -14m- 26m 36m ☑ 250CFMarrow_forwardA mass of ideal gas in a closed piston-cylinder system expands from 427 °C and 16 bar following the process law, pv1.36 = Constant (p times v to the power of 1.36 equals to a constant). For the gas, initial : final pressure ratio is 4:1 and the initial gas volume is 0.14 m³. The specific heat of the gas at constant pressure, Cp = 0.987 kJ/kg-K and the specific gas constant, R = 0.267 kJ/kg.K. Determine the change in total internal energy in the gas during the expansion. Enter your numerical answer in the answer box below in KILO JOULES (not in Joules) but do not enter the units. (There is no expected number of decimal points or significant figures).arrow_forwardmy ID# 016948724. Please solve this problem step by steparrow_forward
- My ID# 016948724 please find the forces for Fx=0: fy=0: fz=0: please help me to solve this problem step by steparrow_forwardMy ID# 016948724 please solve the proble step by step find the forces fx=o: fy=0; fz=0; and find shear moment and the bending moment diagran please draw the diagram for the shear and bending momentarrow_forwardMy ID#016948724. Please help me to find the moment of inertia lx ly are a please show to solve step by stepsarrow_forward
- My ID# 016948724arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningInternational Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
- Understanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning





