
Applied Physics
11th Edition
ISBN: 9780132719865
Author: EWEN, Dale
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15.2, Problem 26P
(a)
To determine
Determine if the original pressure is more or less than that after impact.
(b)
To determine
Determine the original pressure after impact.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
4) Consider the pulley (Mass = 20kg, Radius 0.3m) shown in the picture. Model this pulley as a uniform solid
disk (1 = (1/2) MR2) that is hinged at its center of mass. If the hanging mass is 30 kg, and is released, (a)
compute the angular acceleration of the pulley (b) calculate the acceleration of the hanging mass.
A o
0.3
3019
20KS
Refer to the image attached
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all steps
Chapter 15 Solutions
Applied Physics
Ch. 15.1 - Change 15C to K.Ch. 15.1 - Prob. 2PCh. 15.1 - Prob. 3PCh. 15.1 - Change 235 K to C.Ch. 15.1 - Prob. 5PCh. 15.1 - Prob. 6PCh. 15.1 - Prob. 7PCh. 15.1 - Change 375R to F.Ch. 15.1 - T=315 K, V=225 cm3, T=275 K, find V.Ch. 15.1 - T=615R, V=60.3 in3, T=455R, find V.
Ch. 15.1 - V=200 ft3, T=95F, V=250 ft3, find T.Ch. 15.1 - Prob. 12PCh. 15.1 - Some gas occupies a volume of 325 m3 at 41 C. What...Ch. 15.1 - Some oxygen occupies 275 in3 at 35C. Find its...Ch. 15.1 - Some methane occupies 1575 L at 45C. Find its...Ch. 15.1 - Some helium occupies 1200ft3 at 70F. At what...Ch. 15.1 - Some nitrogen occupies 14,300 cm3 at 25.6C. What...Ch. 15.1 - Some propane occupies 1270 cm2 at 18.0C. What is...Ch. 15.1 - Some carbon dioxide occupies 34.5 L at 49.0C. Find...Ch. 15.1 - Some oxygen occupies 28.7 ft3 at 11.0F. Find its...Ch. 15.1 - A balloon contains 26.0 L of hydrogen at 40.0F....Ch. 15.1 - Using Charles's law, determine the effect (a) on...Ch. 15.1 - If 38.0 L of hydrogen is heated to 110C and...Ch. 15.1 - Prob. 24PCh. 15.1 - A hot air balloon contains 147 m3 of air at 19.0C....Ch. 15.1 - A tank with 139 L of propane is cooled from 91.0C...Ch. 15.1 - A 2000 L fuel tank filled with propane at 21C is...Ch. 15.1 - A propane nurse tank is left on a job site...Ch. 15.1 - A propane tank now containing 250L of propane was...Ch. 15.1 - A tank with 500 L of propane is heated from 17.0C...Ch. 15.2 - V'=315 cm3, P=101 kPa, P'=85.0 kPa; find V.Ch. 15.2 - V=450L, V'=700L, P=750 kPa; find P'.Ch. 15.2 - V=76.0 m3, V'=139 m3, P'=41.0 kPa; find P.Ch. 15.2 - V=439 in3, P'=38.7 psi, P=47.1 psi; find V'.Ch. 15.2 - D=1.80 kg/m3, P=108 kPa, P'=125 kPa; find D'.Ch. 15.2 - Prob. 6PCh. 15.2 - P=51.0 psi, P'=65.3 psi, D'=0.231 lb/ft3; find D.Ch. 15.2 - Some air at 22.5 psi occupies 1400 in3. What is...Ch. 15.2 - Prob. 9PCh. 15.2 - Prob. 10PCh. 15.2 - Prob. 11PCh. 15.2 - Some oxygen has a density of 1.75 kg/m3 at normal...Ch. 15.2 - Some methane at 500 kPa gauge pressure occupies...Ch. 15.2 - Prob. 14PCh. 15.2 - Some nitrogen at 80.0 psi gauge pressure occupies...Ch. 15.2 - Prob. 16PCh. 15.2 - Prob. 17PCh. 15.2 - Some propane occupies 2.30 m3 at a gauge pressure...Ch. 15.2 - A quantity of oxygen at a gauge pressure of 20.0...Ch. 15.2 - Some air occupies 4.5 m3 at a gauge pressure of 46...Ch. 15.2 - Some oxygen at 87.6 psi (absolute) occupies 75.0...Ch. 15.2 - A gas at 300 kPa (absolute) occupies 40.0 m3. Find...Ch. 15.2 - A volume of 58.0 L of hydrogen is heated from 33C...Ch. 15.2 - Prob. 24PCh. 15.2 - A 2.00-L plastic bottle contains air at a pressure...Ch. 15.2 - Prob. 26PCh. 15.2 - A mass of 1.31 kg of neon is in a 3.00-m3...Ch. 15.2 - The air density in a tractor tire is 1.40 kg/m3 at...Ch. 15.2 - An unknown gas is in a tank at 13.3 kPa. (a) If...Ch. 15.3 - Use Vp=VPto find each quantity. (All pressures are...Ch. 15.3 - Use Vp=VP to find each quantity. (All pressures...Ch. 15.3 - Use Vp=VPto find each quantity. (All pressures are...Ch. 15.3 - Use Vp=VPto find each quantity. (All pressures are...Ch. 15.3 - Use Vp=VP to find each quantity. (All pressures...Ch. 15.3 - We have 600 in3 of oxygen at1500 psi at 65F. What...Ch. 15.3 - We have 800m3 of natural gas at 235 kPa at 30C....Ch. 15.3 - We have 1400 L of nitrogen at 135 kPa at 54C. What...Ch. 15.3 - An acetylene welding tank has a pressure of 2000...Ch. 15.3 - What is the new pressure in Problem 9 if the...Ch. 15.3 - An ideal gas occupies a volume of 5.00 L at STP....Ch. 15.3 - An ideal gas occupies a volume of 5.00 L at STP....Ch. 15.3 - Some propane occupies 2.00 m3 at18.0C at an...Ch. 15.3 - A balloon with volume 3200 mL of xenon gas is at a...Ch. 15.3 - A 7 85-L helium-filled balloon experiences a...Ch. 15 - Prob. 1RQCh. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Prob. 4RQCh. 15 - Prob. 5RQCh. 15 - Prob. 6RQCh. 15 - Prob. 7RQCh. 15 - Prob. 8RQCh. 15 - Prob. 9RQCh. 15 - What causes the tendency of the volume and...Ch. 15 - What causes the tendency of the temperature of a...Ch. 15 - What causes the tendency of the pressure of a gas...Ch. 15 - A gas occupies 13.5 ft3 at 35.8F. What will the...Ch. 15 - A gas occupies 3.45 m3 at 18.5 C. What will the...Ch. 15 - Some hydrogen occupies 115 ft3 at 54.5F. What is...Ch. 15 - Some carbon dioxide occupies 45.3 L at 38.5C. What...Ch. 15 - Some propane occupies 145 cm3 at 12.4 C. What is...Ch. 15 - Some air at 276 kPa occupies 32.4 m3. What is its...Ch. 15 - Some helium at 17.5 psi gauge pressure occupies...Ch. 15 - Prob. 8RPCh. 15 - We have 435 in3 of nitrogen at 1340 psi gauge...Ch. 15 - We have 755 m3 of carbon dioxide at 344 kPa at...Ch. 15 - A welding tank has a gauge pressure of 1950 psi at...Ch. 15 - An ideal gas occupies a volume of 4.50 L at STP....Ch. 15 - An ideal gas occupies a volume of 5.35 L at STP....Ch. 15 - A volume of 1120 L of helium at 4000 Pa is heated...Ch. 15 - In a 47-cm-tall cylinder of radius 7.0 cm,...Ch. 15 - Fran purchases a 1.85-ft3, helium-filled Mylar...Ch. 15 - An automobile tire is filled to an air pressure of...Ch. 15 - A 15.0-cm-long cylinder has a movable piston with...Ch. 15 - A 0.0300-m3 steel tank containing helium is stored...Ch. 15 - A lightweight weather-collecting sensor is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Make up an application physics principle problem that provides three (3) significant equations based on the concepts of capacitors and ohm's law.arrow_forwardA straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.arrow_forwardA rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forward
- A rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forwardA circular loop of wire with radius 0.0480 m and resistance 0.163 Ω is in a region of spatially uniform magnetic field, as shown in the following figure (Figure 1). The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 7.88 T and is decreasing at a rate of -0.696 T/s . Is the induced current in the loop clockwise or counterclockwise? What is the rate at which electrical energy is being dissipated by the resistance of the loop? Please explain all stepsarrow_forward
- A 0.333 m long metal bar is pulled to the left by an applied force F and moves to the left at a constant speed of 5.90 m/s. The bar rides on parallel metal rails connected through a 46.7 Ω resistor, as shown in (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.625 T magnetic field that is directed out of the plane of the figure. Is the induced current in the circuit clockwise or counterclockwise? What is the rate at which the applied force is doing work on the bar? Please explain all stepsarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Calculate the magnitude of the emf induced in the circuit. Find the direction of the current induced in the circuit. Calculate the current through the resistor.arrow_forwardIn the figure, a conducting rod with length L = 29.0 cm moves in a magnetic field B→ of magnitude 0.510 T directed into the plane of the figure. The rod moves with speed v = 5.00 m/s in the direction shown. When the charges in the rod are in equilibrium, which point, a or b, has an excess of positive charge and where does the electric field point? What is the magnitude E of the electric field within the rod, the potential difference between the ends of the rod, and the magnitude E of the motional emf induced in the rod? Which point has a higher potential? Please explain all stepsarrow_forward
- Examine the data and % error values in Data Table 2 where the mass of the pendulum bob increased but the angular displacement and length of the simple pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the mass of the pendulum bob, to within a reasonable percent error.arrow_forwardPlease graph, my software isn't working - Data Table 4 of Period, T vs √L . (Note: variables are identified for graphing as y vs x.) On the graph insert a best fit line or curve and display the equation on the graph. Thank you!arrow_forwardI need help with problems 93 and 94arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning


Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning