Evaluating a Line Integral In Exercises 19-22, evaluate the line integral along the given path. ∫ C 3 ( x − y ) d s C : r ( t ) = t i + ( 2 − t ) j 0 ≤ t ≤ 1
Evaluating a Line Integral In Exercises 19-22, evaluate the line integral along the given path. ∫ C 3 ( x − y ) d s C : r ( t ) = t i + ( 2 − t ) j 0 ≤ t ≤ 1
Solution Summary: The author explains how to calculate the line integral displaystyle undersetCint3(x-y)ds along the path.
Evaluating a Line Integral In Exercises 19-22, evaluate the line integral along the given path.
∫
C
3
(
x
−
y
)
d
s
C
:
r
(
t
)
=
t
i
+
(
2
−
t
)
j
0
≤
t
≤
1
With differentiation, one of the major concepts of calculus. Integration involves the calculation of an integral, which is useful to find many quantities such as areas, volumes, and displacement.
I circled the correct, could you explain using stoke
Use Euler's method to numerically integrate
dy
dx
-2x+12x² - 20x +8.5
from x=0 to x=4 with a step size of 0.5. The initial condition at x=0 is y=1. Recall
that the exact solution is given by y = -0.5x+4x³- 10x² + 8.5x+1
Find an equation of the line tangent to the graph of f(x) = (5x-9)(x+4) at (2,6).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY