
(a)
Interpretation:
The given spectra consistent with the structure of the molecule that either contains chlorine or bromine atom with it.
Concept Introduction:
Mass spectroscopy: It is a form of spectroscopic technique which is used for the elucidation of the molecular formula and molecular weight of the compound, depending upon the mass of the molecule.
Molecular formula: It represents the types of atoms with their total number present in a given molecule.
Molecular ion peak
Base peak: It is the tallest peak in the spectrum.
The
The
The
Isotopic pattern for bromine atom: The Bromine atom has two isotopes that is
The pattern is obtained as half of signal moved from
Isotopic pattern for chlorine atom: The isotope
(b)
Interpretation:
The given spectra consistent with the structure of the molecule that either contains chlorine or bromine atom with it.
Concept Introduction:
Mass spectroscopy: It is a form of spectroscopic technique which is used for the elucidation of the molecular formula and molecular weight of the compound, depending upon the mass of the molecule.
Molecular formula: It represents the types of atoms with their total number present in a given molecule.
Molecular ion peak
Base peak: It is the tallest peak in the spectrum.
The
The
The
Isotopes: The elements with same atomic number but with different mass number are said to be isotopes of each other.
Isotopic pattern for bromine atom: The Bromine atom has two isotopes that is
The pattern is obtained as half of signal moved from
Isotopic pattern for chlorine atom: The isotope
(c)
Interpretation:
The given spectra consistent with the structure of the molecule that either contains chlorine or bromine atom with it.
Concept Introduction:
Mass spectroscopy: It is a form of spectroscopic technique which is used for the elucidation of the molecular formula and molecular weight of the compound, depending upon the mass of the molecule.
Molecular formula: It represents the types of atoms with their total number present in a given molecule.
Molecular ion peak
Base peak: It is the tallest peak in the spectrum.
The
The
The
Isotopes: The elements with same atomic number but with different mass number are said to be isotopes of each other.
Isotopic pattern for bromine atom: The Bromine atom has two isotopes that is
The pattern is obtained as half of signal moved from
Isotopic pattern for chlorine atom: The isotope
(d)
Interpretation:
The given spectra consistent with the structure of the molecule that either contains chlorine or bromine atom with it.
Concept Introduction:
Mass spectroscopy: It is a form of spectroscopic technique which is used for the elucidation of the molecular formula and molecular weight of the compound, depending upon the mass of the molecule.
Molecular formula: It represents the types of atoms with their total number present in a given molecule.
Molecular ion peak
Base peak: It is the tallest peak in the spectrum.
The
The
The
Isotopes: The elements with same atomic number but with different mass number are said to be isotopes of each other.
Isotopic pattern for bromine atom: The Bromine atom has two isotopes that is
The pattern is obtained as half of signal moved from
Isotopic pattern for chlorine atom: The isotope

Want to see the full answer?
Check out a sample textbook solution
Chapter 15 Solutions
Organic Chemistry, Binder Ready Version
- The cobalt mi-hydroxide complex cobaltate(III) of potassium is a dinuclear complex. Correct?arrow_forward3. Arrange the different acids in Exercise B # 2 from the strongest (1) to the weakest acid (10). 1. 2. (strongest) 3. 4. 5. 6. 7. 8. 9. 10 10. (weakest)arrow_forwardName Section Score Date EXERCISE B pH, pOH, pка, AND PKD CALCULATIONS 1. Complete the following table. Solution [H+] [OH-] PH РОН Nature of Solution A 2 x 10-8 M B 1 x 10-7 M C D 12.3 6.8 2. The following table contains the names, formulas, ka or pka for some common acids. Fill in the blanks in the table. (17 Points) Acid Name Formula Dissociation reaction Ka pka Phosphoric acid H₂PO₁ H3PO4 H++ H₂PO 7.08 x 10-3 Dihydrogen H₂PO H₂PO H+ HPO 6.31 x 10-6 phosphate Hydrogen HPO₁ 12.4 phosphate Carbonic acid H2CO3 Hydrogen HCO 6.35 10.3 carbonate or bicarbonate Acetic acid CH,COOH 4.76 Lactic acid CH₂CHOH- COOH 1.38 x 10 Ammonium NH 5.63 x 10-10 Phenol CH₂OH 1 x 10-10 Protonated form CH3NH3* 3.16 x 10-11 of methylaminearrow_forward
- Imagine an electrochemical cell based on these two half reactions with electrolyte concentrations as given below: Oxidation: Pb(s) → Pb2+(aq, 0.10 M) + 2 e– Reduction: MnO4–(aq, 1.50 M) + 4 H+(aq, 2.0 M) + 3 e– → MnO2(s) + 2 H2O(l) Calculate Ecell (assuming temperature is standard 25 °C).arrow_forward: ☐ + Draw the Fischer projection of the most common naturally-occurring form of aspartate, with the acid group at the top and the side chain at the bottom. Important: be sure your structure shows the molecule as it would exist at physiological pH. Click and drag to start drawing a structure. ✓arrow_forwardFor a silver-silver chloride electrode, the following potentials are observed: E°cell = 0.222 V and E(saturated KCl) = 0.197 V Use this information to find the [Cl–] (technically it’s the activity of Cl– that’s relevant here, but we’ll just call it “concentration” for simplicity) in saturated KCl.arrow_forward
- A concentration cell consists of two Sn/Sn2+ half-cells. The cell has a potential of 0.10 V at 25 °C. What is the ratio of [Sn2+] (i.e., [Sn2+left-half] / [Sn2+right-half])?arrow_forwardElectrochemical cell potentials can be used to determine equilibrium constants that would be otherwise difficult to determine because concentrations are small. What is Κ for the following balanced reaction if E˚ = +0.0218 V? 3 Zn(s) + 2 Cr3+(aq) → 3 Zn2+(aq) + Cr(s) E˚ = +0.0218 Varrow_forwardConsider the following half-reactions: Hg2+(aq) + 2e– → Hg(l) E°red = +0.854 V Cu2+(aq) + 2e– → Cu(s)E°red = +0.337 V Ni2+(aq) + 2e– → Ni(s) E°red = -0.250 V Fe2+(aq) + 2e– → Fe(s) E°red = -0.440 V Zn2+(aq) + 2e– → Zn(s) E°red = -0.763 V What is the best oxidizing agent shown above (i.e., the substance that is most likely to be reduced)?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





