
(a)
The mathematical proof of the statement stating that using L'Hopital Rule, , though not defined at x = 0, can be made continuous by assigning the value

Answer to Problem 53E
Solution: The mathematical proof of the statement stating that using L'Hopital Rule, , though not defined at x = 0, can be made continuous by assigning the value is derived.
Explanation of Solution
Explanation:
Given: for a>0
Calculation:
Step 1: The function , is continuous if .
Step 2: We verify this limit using L'Hopital Rule:
Therefore, f is continuous.
Conclusion: The statement stating that using L'Hopital Rule, , though not defined at x = 0, can be made continuous by assigning the value is mathematically proved.
(b)
The mathematical proof of the statement stating that for using triangle inequality and the mathematical proof of the statement stating that I(a) converges by applying the Comparison Theorem

Answer to Problem 53E
Solution: Both the mathematical proof of the statement stating that for using triangle inequality and the mathematical proof of the statement stating that I(a) converges by applying the Comparison Theorem are derived.
Explanation of Solution
Given: , , , a > 0
Calculation:
Step 1: We now show that the following integral converges:
(a>0)
Since, then for x > 0
If x > 1 we have,
That is for x > 1
Step 2: Also, since we have for x > 1
Thus, we get
Step 3: Hence, from Step 1 and Step 2, we get
Step 4: We now show that the integral of the right hand side converges:
Since the integral converges, we conclude from Step 3 and the Comparison Test for Improper Integral that
also converges for a > 0.
Conclusion: Both the statement stating that for using triangle inequality and the statement stating that I(a) converges by applying the Comparison Theorem are mathematically proved.
(c)
The mathematical proof of the equation

Answer to Problem 53E
Solution: The mathematical proof of the equation is derived
Explanation of Solution
Given: , a>0
Calculation:
Step 1: We compute the inner integral with respect to y:
Step 2: Hence,
Conclusion: The equation is mathematically proved.
(d)
By interchanging the order of

Answer to Problem 53E
Solution: By interchanging the order of integration, the mathematical proof of the equation
is derived.
Explanation of Solution
Given: , a>0
Calculation:
Step 1: By the definition of the improper integral,
Step 2: We compute the double integral. Using Fubini's Theorem we may compute the iterated integral using the reversed order of integration. That is,
Combining with Step 1, we get,
Conclusion: By interchanging the order of integration, the equation is mathematically proved.
(e)
The mathematical proof of the statement stating the limit in is zero by using the Comparison Theorem.

Answer to Problem 53E
Solution: The mathematical proof of the statement stating the limit in is zero by using the Comparison Theorem is derived.
Explanation of Solution
Given: , a>0
Calculation:
Step 1: We consider the following possible cases:
Case 1: then in the interval of integration . As , we may assume that T > 0
Thus,
Hence,
By the limit and the Squeeze Theorem, we conclude that,
Case 2:
Then,
and in the interval of integration , therefore
(the function is decreasing).
Hence,
By the limit and the Squeeze Theorem, we conclude that
We thus showed that for all a > 0,
Conclusion: The statement stating the limit in is zero by using the Comparison Theorem is mathematically proved.
Want to see more full solutions like this?
Chapter 15 Solutions
Applied Calculus (with Infotrac) 3rd Edition By Waner, Stefan; Costenoble, Steven Published By Brooks Cole Hardcover
- (10 points) Let S be the upper hemisphere of the unit sphere x² + y²+2² = 1. Let F(x, y, z) = (x, y, z). Calculate the surface integral J F F-dS. Sarrow_forward(8 points) Calculate the following line integrals. (a) (4 points) F Fds where F(x, y, z) = (x, y, xy) and c(t) = (cost, sint, t), tЄ [0,π] . (b) (4 points) F. Fds where F(x, y, z) = (√xy, e³, xz) where c(t) = (t², t², t), t = [0, 1] .arrow_forwardreview help please and thank you!arrow_forward
- (10 points) Let S be the surface that is part of the sphere x² + y²+z² = 4 lying below the plane 2√3 and above the plane z-v -√3. Calculate the surface area of S.arrow_forward(8 points) Let D = {(x, y) | 0 ≤ x² + y² ≤4}. Calculate == (x² + y²)³/2dA by making a change of variables to polar coordinates, i.e. x=rcos 0, y = r sin 0.arrow_forwardx² - y² (10 points) Let f(x,y): = (a) (6 points) For each vector u = (1, 2), calculate the directional derivative Duƒ(1,1). (b) (4 points) Determine all unit vectors u for which Duf(1, 1) = 0.arrow_forward
- Solve : X + sin x = 0. By the false positioning numerical methodarrow_forwardSolve: X + sin X = 0 by the false positionining numerical methodarrow_forwardOn from the equation: 2 u = C₁ + C₂ Y + Czy + Cu y³ Find C₁, C₂, C3 and Cy Using these following Cases : (a) 4=0 at y=0 (b) U = U∞ at y = 8 du (c) at Y = S ду --y. ди = 0 at y = 0 бугarrow_forward
- Tips S ps L 50. lim x2 - 4 x-2x+2 51. lim 22 - X 52. 53. x 0 Answer lim x 0 lim 2-5 X 2x2 2 x² Answer -> 54. lim T - 3x - - 25 +5 b+1 b3b+3 55. lim X x-1 x 1 Answer 56. lim x+2 x 2 x 2 57. lim x²-x-6 x-2 x²+x-2 Answer-> 23-8 58. lim 2-22-2arrow_forwardS 36. lim 5x+2 x-2 37. lim √√2x4 + x² x-3 Answer-> 2x3 +4 38. lim x12 √ x² + 1 √√x² + 8 39. lim x-1 2x+4 Answer 40. lim x3 2x x√x² + 7 √√2x+3arrow_forwardSee imagearrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





