Loose Leaf For Explorations: Introduction To Astronomy
9th Edition
ISBN: 9781260432145
Author: Thomas T Arny, Stephen E Schneider Professor
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 9P
To determine
The
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Imagine that you are observing the light from a distant star that is located in a galaxy 100 million lightyears
away from you. By analysis of the starlight received, you are able to tell that the image we see is of a 10-
million-year-old star. You are also able to predict that the star will have a total lifetime of 50 million years, at
which point it will end in a catastrophic supernova.
a) How old does the star appear to be to us here on Earth now?
b) How long will it be before we receive the light from the supernova event?
c) Has the supernova already occurred? If so, when did it occur?
The Andromeda Galaxy, M31, is the closest large spiral galaxy to our Milky Way. When we look at its chemical spectrum, we see that its hydrogen alpha emission line (Hα) has an observed wavelength of λobs = 655 nm.-Calculate z, being careful with the sign.-How fast is it moving in km/s?-Is it redshifted or blueshifted? Is it moving towards or away from us?
answer to three significant figures.
1.2
1.0
0.8
0.6
Cosmic background
data from COBE
0.4
0.2
0.0
0.5
10
Wavelength A in mm
c)
Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the
current temperature of the CMB. Based on your estimate, what would the temperature of
the CMB have been at a redshift of z = 5000?
The left hand diagram above shows the results from observations of the Cosmic Microwave
Radiated Intensity per Unit Wavelength
(16° Watts/m per mm)
Chapter 15 Solutions
Loose Leaf For Explorations: Introduction To Astronomy
Ch. 15 - Prob. 1QFRCh. 15 - Prob. 2QFRCh. 15 - Prob. 3QFRCh. 15 - Prob. 4QFRCh. 15 - Prob. 5QFRCh. 15 - Prob. 6QFRCh. 15 - Prob. 7QFRCh. 15 - Prob. 8QFRCh. 15 - Prob. 9QFRCh. 15 - Prob. 10QFR
Ch. 15 - Prob. 11QFRCh. 15 - Prob. 12QFRCh. 15 - Prob. 13QFRCh. 15 - What is nonthermal radiation?Ch. 15 - What happens when a gravitational wave moves? What...Ch. 15 - What is a black hole? Are they truly black? What...Ch. 15 - Prob. 17QFRCh. 15 - Prob. 18QFRCh. 15 - Prob. 19QFRCh. 15 - Prob. 20QFRCh. 15 - Prob. 1TQCh. 15 - Prob. 2TQCh. 15 - Prob. 3TQCh. 15 - Prob. 5TQCh. 15 - Prob. 6TQCh. 15 - Prob. 7TQCh. 15 - Prob. 8TQCh. 15 - Suppose you jumped into a black hole feet first....Ch. 15 - Prob. 10TQCh. 15 - Prob. 1PCh. 15 - Prob. 2PCh. 15 - Prob. 3PCh. 15 - Prob. 4PCh. 15 - Prob. 5PCh. 15 - Prob. 6PCh. 15 - Prob. 7PCh. 15 - Prob. 8PCh. 15 - Prob. 9PCh. 15 - Prob. 10PCh. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 1TYCh. 15 - Prob. 2TYCh. 15 - Prob. 3TYCh. 15 - Prob. 4TYCh. 15 - Prob. 5TYCh. 15 - Prob. 6TYCh. 15 - What evidence leads astronomers to believe that...Ch. 15 - (15.3) The Schwarzschild radius of a body is (a)...Ch. 15 - Prob. 9TYCh. 15 - Prob. 10TY
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- H II regions can exist only if there is a nearby star hot enough to ionize hydrogen. Hydrogen is ionized only by radiation with wavelengths shorter than 91.2 nm. What is the temperature of a star that emits its maximum energy at 91.2 nm? (Use Wien’s law from Radiation and Spectra.) Based on this result, what are the spectral types of those stars likely to provide enough energy to produce H II regions?arrow_forwardWhy would we not expect to detect X-rays from a disk of matter about an ordinary star?arrow_forwardWhat is Heinrich Hertz discovery and experimentation? please answer it using diagram.arrow_forward
- Please answer within 90 minutes.arrow_forwardThe Stefan-Boltzmann equation can be used to estimate the size of asteroids. "Sigma," the Stefan-Boltzmann constant, is 5.67 x 10 Watts/m²K. If you want to abbreviate Plus 1.1415 You measure the infrared emission from an asteroid and conclude that it has a temperature of 249 K. Using rader you find the distance, and are then able to use your infrared brightness to determine a luminosity of 7.21E+12 Watts. If you assume the asteroid is roughly spherical, what is its radius in meters? CHECK ANSWERarrow_forwardYou record the spectrum of a distant star using a telescope on the ground on Earth. Upon analysing the spectrum, you discover absorption lines spaced at intervals typical of oxygen atoms. Which of the following are possible interpretations of this evidence? Select all that apply. The width of the spectral lines gives the diameter of the star The star is likely orbited by habitable planets with breathable atmospheres. The height of the spectral lines above the star's general blackbody spectral curve tells us how much oxygen is in the star The atmosphere of Earth contains oxygen The red or blueshift of the set of lines can tell us the speed of the star's motion toward or away from usarrow_forward
- Let’s say you’re looking for extrasolar planets. You observe a star that has a spectral shift in the line that is supposed to be at at 656.28011 nm – this star shows this line at 656.28005 nm. What is the radial velocity of star (in m/s) and in what direction in relation to you? a) 27.4 m/s, towards b) 27.4 km/s, away c) -27.4 m/s, toward d) -27.4 km/s, awayarrow_forwardI need urgent answers on the photo provided here pls. Thank you so much.arrow_forward1) There is a one earth mass planet orbiting an M5 star of 0.2 Mo and luminosity 1x10-2 Lo- A) How close does the planet need to be to the star in order to receive the same amount of energy as the Earth receives from the sun? B) What is the orbital period of the planet at this distance? C) What is the magnitude of the radial velocity perturbation of the star? D) If the system is edge on to us, would we be likely to detect this planet using the radial velocity method?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning