Concept explainers
Solve the parallel circuit for total circuit resistance, total circuit amperage, and the amperage through each leg (Figure 15-65).
The total circuit resistance.
Total circuit amperage.
The amperage through leg 1.
The amperage through leg 2.
The amperage through leg 3.
Answer to Problem 8SA
The total circuit resistance is
Total circuit amperage is
The amperage through leg 1 is
The amperage through leg2 is
The amperage through leg3 is
Explanation of Solution
Given information:
The total voltage is
Write the expression of total resistance of the circuit.
Here, the third resistance is
Write the expression of total current or amperage.
Here, the total voltage is
Write the expression of current or amperage through leg 1.
Write the expression of current or amperage through leg2.
Write the expression of current or amperage through leg 3.
Calculation:
Substitute
Thus, the total circuit resistance is
Substitute
Thus, total circuit amperage is
Substitute
Thus, the amperage through leg 1 is
Substitute
Thus, the amperage through leg2 is
Substitute
Thus, the amperage through leg 3 is
Want to see more full solutions like this?
Chapter 15 Solutions
AUTOMOTIVE TECHNOLOGY -W/MINDTAP ACCESS
- The answer to the problem is 0.14 rad/s. Please show me how to get the final answerarrow_forwardMarks) culate numerically the temperatures of the internal s shown in Fig. 3. The temperature of all boundaries is and the circle (arc) radius is 3m. The temperature PDE is: эт дх + ат 0. 3 = 2 ду Ay -3m Fig. (3)arrow_forwardThe answer to the problem is 58.7 ft/s^2. Please show me how to get the final answerarrow_forward
- A rocket is traveling horizontally over the surface of Mars as indicated in the figure to the right, moving at a speed VR = 100 m/s relative to the surface. The exhaust gas being expelled from the rocket is traveling at a speed of VG/R = 30 m/s, relative to the rocket. VR VG/R (a) Determine the velocity (speed and direction) of the exhaust gas relative to the ground (i.e., the absolute velocity of the exhaust) at this instant. (b) If the exhaust gas temperature is TG = 3500 K, and the exhaust nozzle area is A = 2 m², determine the mass flow rate of gas exiting the rocket. Assume a Mars atmospheric pressure Patm,Mars = 600 Pa, and a gas constant RMars = 188 J/(kg k).arrow_forwardThe answer to the problem is 9.00 j m/s. Please show me how to get the final answerarrow_forwardThe answer to the problem is 2.71 ft/s. Please show me how to get the final answerarrow_forward
- The answer to the problem is 6.40kg m^2. Please show me how to get the final answerarrow_forwardwhy is Fx on the picture producing positive moment around Z-axisarrow_forwardExample 8: 900 Kg dry solid per hour is dried in a counter current continues dryer from 0.4 to 0.04 Kg H20/Kg wet solid moisture content. The wet solid enters the dryer at 25 °C and leaves at 55 °C. Fresh air at 25 °C and 0.01Kg vapor/Kg dry air is mixed with a part of the moist air leaving the dryer and heated to a temperature of 130 °C in a finned air heater and enters the dryer with 0.025 Kg/Kg alry air. Air leaving the dryer at 85 °C and have a humidity 0.055 Kg vaper/Kg dry air. At equilibrium the wet solid weight is 908 Kg solid per hour. *=0.0088 Calculate:- Heat loss from the dryer and the rate of fresh air. Take the specific heat of the solid and moisture are 980 and 4.18J/Kg.K respectively, A. =2500 KJ/Kg. Humid heat at 0.01 Kg vap/Kg dry=1.0238 KJ/Kg. "C. Humid heat at 0.055 Kg/Kg 1.1084 KJ/Kg. "C 2.8 1:41 م Ад Oarrow_forward
- Automotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage LearningAutomotive TechnologyMechanical EngineeringISBN:9781337794213Author:ERJAVEC, Jack.Publisher:Cengage,Understanding Motor ControlsMechanical EngineeringISBN:9781337798686Author:Stephen L. HermanPublisher:Delmar Cengage Learning
- Electrical Transformers and Rotating MachinesMechanical EngineeringISBN:9781305494817Author:Stephen L. HermanPublisher:Cengage LearningRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningWelding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning