Bundle: Chemistry, Loose-Leaf Version, 10th + OWLv2, 4 terms (24 months) Printed Access Card
10th Edition
ISBN: 9781337537933
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 8ALQ
You have a solution of the weak acid HA and add some of the salt NaA to it. What are the major species in the solution? What do you need to know to calculate the pH of the solution, and how would you use this information? How does the pH of the solution of just the HA compare with that of the final mixture? Explain.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
Please correct answer and don't used hand raiting
need help please and thanks dont understand a-b
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal energy
Divide the…
Chapter 15 Solutions
Bundle: Chemistry, Loose-Leaf Version, 10th + OWLv2, 4 terms (24 months) Printed Access Card
Ch. 15 - What is meant by the presence of a common ion? How...Ch. 15 - Define a buffer solution. What makes up a buffer...Ch. 15 - One of the most challenging parts of solving...Ch. 15 - A good buffer generally contains relatively equal...Ch. 15 - Draw the general titration curve for a strong acid...Ch. 15 - Instead of the titration of a strong acid by a...Ch. 15 - Sketch the titration curve for a weak acid...Ch. 15 - Sketch the titration curve for a weak base...Ch. 15 - What is an acidbase indicator? Define the...Ch. 15 - Why does an indicator change from its acid color...
Ch. 15 - What are the major species in solution after...Ch. 15 - A friend asks the following: Consider a buffered...Ch. 15 - Mixing together solutions of acetic acid and...Ch. 15 - Sketch two pH curves, one for the titration of a...Ch. 15 - Sketch a pH curve for the titration of a weak acid...Ch. 15 - You have a solution of the weak acid HA and add...Ch. 15 - You have a solution of the weak acid HA and add...Ch. 15 - The common ion effect for weak acids is to...Ch. 15 - Prob. 12QCh. 15 - A best buffer has about equal quantities of weak...Ch. 15 - Consider the following pH curves for 100.0 mL of...Ch. 15 - An acid is titrated with NaOH. The following...Ch. 15 - Consider the following four titrations. i. 100.0...Ch. 15 - Figure 14-4 shows the pH curves for the titrations...Ch. 15 - Acidbase indicators mark the end point of...Ch. 15 - Consider the titration of 100.0 mL of 0.10 M...Ch. 15 - Consider the following two acids: pKa1 = 2.98;...Ch. 15 - How many of the following are buffered solutions?...Ch. 15 - Which of the following can be classified as buffer...Ch. 15 - A certain buffer is made by dissolving NaHCO3 and...Ch. 15 - A buffer is prepared by dissolving HONH2 and...Ch. 15 - Calculate the pH of each of the following...Ch. 15 - Calculate the pH of each of the following...Ch. 15 - Compare the percent dissociation of the acid in...Ch. 15 - Compare the percent ionization of the base in...Ch. 15 - Calculate the pH after 0.020 mole of HCl is added...Ch. 15 - Calculate the pH after 0.020 mole of HCl is added...Ch. 15 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 15 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 15 - Which of the solutions in Exercise 21 shows the...Ch. 15 - Prob. 34ECh. 15 - Calculate the pH of a solution that is 1.00 M HNO2...Ch. 15 - Calculate the pH of a solution that is 0.60 M HF...Ch. 15 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 15 - Calculate the pH after 0.10 mole of NaOH is added...Ch. 15 - Calculate the pH of each of the following buffered...Ch. 15 - Calculate the pH of each of the following buffered...Ch. 15 - Calculate the pH of a buffered solution prepared...Ch. 15 - A buffered solution is made by adding 50.0 g NH4Cl...Ch. 15 - Calculate the pH after 0.010 mole of gaseous HCl...Ch. 15 - Calculate the pH after 0.15 mole of solid NaOH is...Ch. 15 - Some K2SO3 and KHSO3 are dissolved in 250.0 mL of...Ch. 15 - An aqueous solution contains dissolved C6H5NH3Cl...Ch. 15 - Calculate the mass of sodium acetate that must be...Ch. 15 - What volumes of 0.50 M HNO2 and 0.50 M NaNO2 must...Ch. 15 - Consider a solution that contains both C5H5N and...Ch. 15 - Calculate the ratio [NH3]/[NH4+] in...Ch. 15 - Carbonate buffers are important in regulating the...Ch. 15 - When a person exercises, muscle contractions...Ch. 15 - Consider the acids in Table 13-2. Which acid would...Ch. 15 - Consider the bases in Table 13-3. Which base would...Ch. 15 - Calculate the pH of a solution that is 0.40 M...Ch. 15 - Calculate the pH of a solution that is 0.20 M HOCl...Ch. 15 - Which of the following mixtures would result in...Ch. 15 - Which of the following mixtures would result in a...Ch. 15 - What quantity (moles) of NaOH must be added to 1.0...Ch. 15 - Calculate the number of moles of HCl(g) that must...Ch. 15 - Consider the titration of a generic weak acid HA...Ch. 15 - Sketch the titration curve for the titration of a...Ch. 15 - Consider the titration of 40.0 mL of 0.200 M HClO4...Ch. 15 - Consider the titration of 80.0 mL of 0.100 M...Ch. 15 - Consider the titration of 100.0 mL of 0.200 M...Ch. 15 - Consider the titration of 100.0 mL of 0.100 M...Ch. 15 - Lactic acid is a common by-product of cellular...Ch. 15 - Repeat the procedure in Exercise 61, but for the...Ch. 15 - Repeat the procedure in Exercise 61, but for the...Ch. 15 - Repeat the procedure in Exercise 61, but for the...Ch. 15 - Calculate the pH at the halfway point and at the...Ch. 15 - In the titration of 50.0 mL of 1.0 M methylamine,...Ch. 15 - You have 75.0 mL of 0.10 M HA. After adding 30.0...Ch. 15 - A student dissolves 0.0100 mole of an unknown weak...Ch. 15 - Two drops of indicator HIn (Ka = 1.0 109), where...Ch. 15 - Methyl red has the following structure: It...Ch. 15 - Potassium hydrogen phthalate, known as KHP (molar...Ch. 15 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 15 - Which of the indicators in Fig. 14-8 could be used...Ch. 15 - Prob. 80ECh. 15 - Which of the indicators in Fig. 14-8 could be used...Ch. 15 - Prob. 82ECh. 15 - Estimate the pH of a solution in which bromcresol...Ch. 15 - Estimate the pH of a solution in which crystal...Ch. 15 - A solution has a pH of 7.0. What would be the...Ch. 15 - A solution has a pH of 4.5. What would be the...Ch. 15 - When a diprotic acid, H2A. is titrated with NaOH,...Ch. 15 - Consider die titration of 50.0 mL of 0.10 M H3A...Ch. 15 - Derive an equation analogous to the...Ch. 15 - a. Calculate the pH of a buffered solution that is...Ch. 15 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 15 - You make 1.00 L of a buffered solution (pH = 4.00)...Ch. 15 - You have the following reagents on hand: Solids...Ch. 15 - Prob. 94AECh. 15 - Phosphate buffers are important in regulating the...Ch. 15 - When a diprotic acid, H2A, is titrated with NaOH,...Ch. 15 - Consider the blood buffer system discussed in the...Ch. 15 - What quantity (moles) of HCl(g) must be added to...Ch. 15 - Prob. 99AECh. 15 - The following plot shows the pH curves for the...Ch. 15 - Calculate the volume of 1.50 102 M NaOH that must...Ch. 15 - Prob. 102AECh. 15 - A certain acetic acid solution has pH = 2.68....Ch. 15 - A 0.210-g sample of an acid (molar mass = 192...Ch. 15 - The active ingredient in aspirin is...Ch. 15 - One method for determining the purity of aspirin...Ch. 15 - A student intends to titrate a solution of a weak...Ch. 15 - A student titrates an unknown weak acid, HA, to a...Ch. 15 - A sample of a certain monoprotic weak acid was...Ch. 15 - The pigment cyanidin aglycone is one of the...Ch. 15 - Consider 1.0 L of a solution that is 0.85 M HOC6H5...Ch. 15 - What concentration of NH4Cl is necessary to buffer...Ch. 15 - Consider the following acids and bases: HCO2H Ka =...Ch. 15 - Consider a buffered solution containing CH3NH3Cl...Ch. 15 - Consider the titration of 150.0 mL of 0.100 M HI...Ch. 15 - Consider the titration of 100.0 mL of 0.100 M HCN...Ch. 15 - Consider the titration of 100.0 mL of 0.200 M...Ch. 15 - Consider the following four titrations (iiv): i....Ch. 15 - Another way to treat data from a pH titration is...Ch. 15 - A buffer is made using 45.0 mL of 0.750 M HC3H5O2...Ch. 15 - A 0.400-M solution of ammonia was titrated with...Ch. 15 - What volume of 0.0100 M NaOH must be added to 1.00...Ch. 15 - Consider a solution formed by mixing 50.0 mL of...Ch. 15 - Cacodylic acid, (CH3)2AsO2H, is a toxic compound...Ch. 15 - The titration of Na2CO3 with HCl bas the following...Ch. 15 - Consider the titration curve in Exercise 115 for...Ch. 15 - A few drops of each of the indicators shown in the...Ch. 15 - Malonic acid (HO2CCH2CO2H) is a diprotic acid. In...Ch. 15 - A buffer solution is prepared by mixing 75.0 mL of...Ch. 15 - A 10.00-g sample of the ionic compound NaA, where...Ch. 15 - Calculate the pH of a solution prepared by mixing...Ch. 15 - Consider a solution prepared by mixing the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Describe the evolution of mammals, tracing their synapsid lineage from early amniote ancestors to true mammals....
Loose Leaf For Integrated Principles Of Zoology
An obese 55-year-old woman consults her physician about minor chest pains during exercise. Explain the physicia...
Biology: Life on Earth with Physiology (11th Edition)
The validity of a scientific law.
Physical Universe
Whether two metal foil leaves an electroscope get opposite charge when the electroscope is charged.
Physics of Everyday Phenomena
Choose the best answer to each of the following. Explain your reasoning. If Earth were twice as far as it actua...
Cosmic Perspective Fundamentals
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Bunsenite (NiO) crystallizes like common salt (NaCl), with a lattice parameter a = 4.177 Å. A sample of this mineral that has Schottky defects that are not supposed to decrease the volume of the material has a density of 6.67 g/cm3. What percentage of NiO molecules is missing? (Data: atomic weight of Ni: 58.7; atomic weight of O: 16).arrow_forwardA sample of aluminum (face-centered cubic - FCC) has a density of 2.695 mg/m3 and a lattice parameter of 4.04958 Å. Calculate the fraction of vacancies in the structure. (Atomic weight of aluminum: 26.981).arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardWhich of the following species is a valid resonance structure of A? Use curved arrows to show how A is converted to any valid resonance structure. When a compound is not a valid resonance structurc of A, explain why not. Provide steps and tips on what to look for to understand how to solve and apply to other problems.arrow_forward
- N IZ Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 HN Molecule 3 Х HN www. Molecule 4 Molecule 5 Molecule 6 none of the above NH NH Garrow_forwardShow work with explanation. don't give Ai generated solutionarrow_forwardFollow the curved arrows to draw a second resonance structure for each species. Explain and steps for individual understanding.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemical Principles in the LaboratoryChemistryISBN:9781305264434Author:Emil Slowinski, Wayne C. Wolsey, Robert RossiPublisher:Brooks Cole
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemical Principles in the Laboratory
Chemistry
ISBN:9781305264434
Author:Emil Slowinski, Wayne C. Wolsey, Robert Rossi
Publisher:Brooks Cole
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY