PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Disk A and B have a mass if 6kg and 4kg respectively. They are sliding down on the smooth hoeizontal plane with the velocities shown. the coefficient of the restitution is 0.6.
a. Determine the angle between velocity of A and the line of impact after collision
b. Determine the angle between velocity of B and line of impact after collision
Two smooth disks A and B have the initial velocities shown just before they collide at O. If they have masses m, 8 kg and my 6 kg, determine their speeds just after impact. The coefficient of restitution is e=0.5.
Two disks A and B weigh 4 lb and 8 lb,respectively. If they are sliding on the smoothhorizontal plane with the velocities shown,determine their velocities just after impact. Thecoefficient of restitution between the disks is? = 0.85.
Please show every siingle step in the process , also the free body diagrams thanks
Knowledge Booster
Similar questions
- Disks A and B have a mass of 6 kg and 13 kg. respectively. Disk A is sliding with a velocity of 5 m/s to the left while Disk B is sliding with a velocity of 3 m/s to the right. Determine the speed of disk B just after impact. The coefficient of restitution between them is e = 0.7. Line of impact B. Add your answerarrow_forwardThe 9.0 kg sphere A is held at an angle of 60° as shown, and then is released from rest and hits the B sphere which has a mass of 4.5 kg. In this crash the coefficient of restitution is e = 0.75. The sphere B is attached to the end of a rod lightweight rotating around the O point. The spring is initially non elongated and it is known that the maximum angle θ that the rod turned after the crash measured from the initial position was of 21.4º. Calculate: a) The speed with which sphere A impacts with sphere B. b) The magnitude and direction of the velocities of each sphere A and B after impact. c) The mechanical energy dissipated on impact. d) The spring stiffness constant k.arrow_forwardSphere A weighs 5 kg and is raised until the 2m cord makes an angle of 60 degrees with the vertical. It is then released from rest and hits a body B initially at rest on the smooth horizontal floor. Body B weighs 10 kg and the coefficient of restitution between A and B is 0.60. Determine the velocity of A (m/s) after impact. Answer in 2 decimalsarrow_forward
- Compute the final velocities vį' and v2' after collision of the two cylinders which slide on the smooth horizontal shaft. The velocities are positive if to the right, negative if to the left. The coefficient of restitution is e = 0.85. Assime v1 = 54 ft/sec, v2= 7 ft/sec, W1 = 4 lb, W2 = 8 lb. U2 W1 W2 Answers: V1' = i ft/sec V2' = ft/secarrow_forwardTwo smooth disks A and B each have a mass of 0.5 kg. s of If both disks are moving with the velocities shown when they collide, determine the coefficient of restitution between the disksif after collision B travels along a line, 30° counterclockwise from the y axis. (va)ı = 6 m/s (VB)1 = 4 m/s B.arrow_forwardCompute the final velocities v1' and v2' after collision of the two cylinders which slide on the smooth horizontal shaft. The velocities are positive if to the right, negative if to the left. The coefficient of restitution is e = 0.83.Assime v1 = 27 ft/sec, v2= 4 ft/sec, W1 = 6 lb, W2 = 16 lb.arrow_forward
- 7. Disks A and B weigh 8 Ib and 2 Ib, respectively. If they are sliding on the smooth horizontal plane with the velocities shown, determine their speeds just after impact. The coefficient of restitution between them is e = 0.5. 13 ft/s 18 in 26 ft/sarrow_forwardThe 6-Mg truck and 3-Mg car are traveling with the free-rolling velocities of 37 km/h and 19 km/h, respectively, just before they collide. After the collision, the car moves with a velocity of 15 km/h to the right relative to the truck. Determine the coefficient of restitution between the truck and car.arrow_forwardI'd like to see how to solve this.arrow_forward
- A 100 kg body moves to the right at 5 m/s and another body of mass of W moves to the left at 3 m/s. they meet each other and after impact, the 100 kg body rebounds to the left at 2 m/s. Determine the mass of the other body if the coefficient of restitution is 0.50.arrow_forwardCompute the final velocities v1' and v2' after collision of the two cylinders which slide on the smooth horizontal shaft. The velocities are positive if to the right, negative if to the left. The coefficient of restitution is e = 0.64.Assime v1 = 29 ft/sec, v2= 4 ft/sec, W1 = 7 lb, W2 = 15 lb.arrow_forwardThe angular momentum at "A" is conserved. The 4 Ib rod "AB" is hanging in the vertical position. A 2 lb block, sliding on a smooth horizontal surface with a velocity of 12 ft/s strikes the rod at its end B. The coefficient of restitution between the block and the rod at B is e=0.7. Determine the velocity of the block immediately after the collision. 3 ft 12 ft/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY