
Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
2nd Edition
ISBN: 9780136781158
Author: Eugenia Etkina, Gorazd Planinsic
Publisher: Pearson Education (US)
expand_more
expand_more
format_list_bulleted
Question
Chapter 15, Problem 7RQ
To determine
The way in which the concentration of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.
8
Two moving charged particles exert forces on each other because each creates a magnetic field that acts
on the other. These two "Lorentz" forces are proportional to vix (2 xr) and 2 x (vi x-r), where is the vector
between the particle positions. Show that these two forces are equal and opposite in accordance with Newton's third
law if and only if rx (vi × 2) = 0.
6
The force = +3 + 2k acts at the point (1, 1, 1). Find the torque of the force about
(a)
(b)
the point (2, -1, 5). Careful about the direction of ŕ between the two points.
the line = 21-+5k+ (i-+2k)t. Note that the line goes through the point (2, -1, 5).
Chapter 15 Solutions
Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
Ch. 15 - Review Question 15.1 Imagine that a balloon...Ch. 15 - Prob. 2RQCh. 15 - Prob. 3RQCh. 15 - Review Question 15.4 Describe two situations in...Ch. 15 - Prob. 5RQCh. 15 - Review Question 15.6 Why are the units for...Ch. 15 - Prob. 7RQCh. 15 - An ideal gas in a container is separated with a...Ch. 15 - 2. A container of gas has a movable piston, which...Ch. 15 - Prob. 3MCQ
Ch. 15 - Prob. 4MCQCh. 15 - 5. How much heat is stored in 10 kg of water at...Ch. 15 - We define the specific heat of a material as the...Ch. 15 - Prob. 7MCQCh. 15 - Figure Q15.8 shows a P-versus-V graph for two...Ch. 15 - 9. An electric heater is keeping the inside of a...Ch. 15 - Match each heating mechanism (left column) with a...Ch. 15 - 11. Your friend says, "Heat rises." Do you agree...Ch. 15 - Suggest practical ways for determining the...Ch. 15 - Suggest practical ways to measure heats of melting...Ch. 15 - Prob. 14CQCh. 15 - 15. Why does an egg take the same time interval to...Ch. 15 - Why does food cook faster in a pressure cooker...Ch. 15 - A potato into which several nails have been pushed...Ch. 15 - Explain why double-paned windows help reduce...Ch. 15 - 19. The water in a paper cup can be boiled by...Ch. 15 - Provide two reasons why blowing across hot soup or...Ch. 15 - 21. Placing a moistened finger in the wind can...Ch. 15 - Why does covering a keg of beer with wet towels on...Ch. 15 - 23. Explain why dogs can cool themselves by...Ch. 15 - 24. Some houses are heated by hot oil or water...Ch. 15 - If on a hot summer day you place one bare foot on...Ch. 15 - 26. A woman has a cup of hot coffee and a small...Ch. 15 - * EST Estimate the thermal energy of the air in...Ch. 15 - A balloon of volume 0.010 m3 is filled with 1.0...Ch. 15 - * Imagine that the helium balloon from the...Ch. 15 - 4. *You accidentally release a helium-filled...Ch. 15 - * Helium in a cylinder with a piston and initially...Ch. 15 - Prob. 7PCh. 15 - 8. * Jeopardy problem A gas process is described...Ch. 15 - 9. * Jeopardy problem A gas process is described...Ch. 15 - 10. Use the first law of thermodynamics to devise...Ch. 15 - Prob. 11PCh. 15 - Prob. 12PCh. 15 - Prob. 13PCh. 15 - 14 *You are making a table for specific heats of...Ch. 15 - Prob. 15PCh. 15 - 16. * BIO EST Body temperature change A drop in...Ch. 15 - 17. * BIO Temperature change of a person A 50-kg...Ch. 15 - Determine the amount of thermal energy provided by...Ch. 15 - 19. EST Estimate the time interval required for a...Ch. 15 - Prob. 20PCh. 15 - * BIO Exercising warms body A 50-kg woman...Ch. 15 - Prob. 22PCh. 15 - * You add 20C water to 0.20 kg of 40C soup After a...Ch. 15 - BIO Cooling a hot child A 30-kg child has a...Ch. 15 - Prob. 25PCh. 15 - 26. * You pour 250 g of tea into a Styrofoam cup,...Ch. 15 - Prob. 27PCh. 15 - Prob. 28PCh. 15 - 29. Determine the energy needed to change a...Ch. 15 - 30. * When of energy is removed from 0.60 kg of...Ch. 15 - Prob. 31PCh. 15 - C that must be added to a cup with 250 g of tea at...Ch. 15 - An ice-making machine removes thermal energy from...Ch. 15 - Prob. 34PCh. 15 - Prob. 35PCh. 15 - 36. How much energy is required to convert (a)...Ch. 15 - 37. Cooling with alcohol rub During a back rub, 80...Ch. 15 - 38. Energy in a lightning flash A lightning flash...Ch. 15 - 39 A kettle containing 0.75 kg of boiling water...Ch. 15 - Prob. 40PCh. 15 - * EST Energy changes when it rains Estimate the...Ch. 15 - 42. * Insulating a house You insulate your house...Ch. 15 - C and the outside temperature is -10C?Ch. 15 - Prob. 44PCh. 15 - 45. While blowing across the bowl of soup in the...Ch. 15 - Prob. 46PCh. 15 - BIO Marathon You are training for a marathon While...Ch. 15 - Prob. 48PCh. 15 - 49. * A canteen is covered with wet canvas. If 15...Ch. 15 - * EST Evaporative cooling Each year a layer of...Ch. 15 - Prob. 51PCh. 15 - BIO Tree leaf A tree leaf of mass of 0.80 g and...Ch. 15 - Warming a spaceship Your friend says that natural...Ch. 15 - Prob. 54PCh. 15 - Which is less dense: dry or wet air? Explain your...Ch. 15 - * BIO Losing liquid while running While running,...Ch. 15 - Prob. 57PCh. 15 - 58. ** EST Global climate change Assume that...Ch. 15 - Prob. 59PCh. 15 - * Standard house 2 On the same day in the same...Ch. 15 - * Standard house 3 Suppose that the following...Ch. 15 - Prob. 62PCh. 15 - ** BIO EST Metabolism warms bedroom Because of its...Ch. 15 - Prob. 65GPCh. 15 - * EST House ventilation For purposes of...Ch. 15 - Prob. 67GPCh. 15 - ** EST Heating an event center with metabolic...Ch. 15 - Prob. 70RPPCh. 15 - Prob. 71RPPCh. 15 - Prob. 72RPPCh. 15 - Prob. 73RPPCh. 15 - Prob. 74RPPCh. 15 - Prob. 75RPPCh. 15 - Prob. 76RPPCh. 15 - Prob. 77RPPCh. 15 - Prob. 78RPPCh. 15 - Prob. 79RPPCh. 15 - Prob. 80RPP
Knowledge Booster
Similar questions
- 5 Find the total work done by forces A and B if the object undergoes the displacement C. Hint: Can you add the two forces first?arrow_forward1 F2 F₁ -F₁ F6 F₂ S A Work done on the particle as it moves through the displacement is positive. True False by the force Farrow_forwardA student measuring the wavelength produced by a vapour lamp directed the lightthrough two slits with a separation of 0.20 mm. An interference pattern was created on the screen,3.00 m away. The student found that the distance between the first and the eighth consecutive darklines was 8.0 cm. Draw a quick picture of the setup. What was the wavelength of the light emittedby the vapour lamp?arrow_forward
- A ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut Rarrow_forward(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel. Your response differs significantly from the correct answer. Rework your solution from the…arrow_forward(a) Imagine that a space probe could be fired as a projectile from the Earth's surface with an initial speed of 5.78 x 104 m/s relative to the Sun. What would its speed be when it is very far from the Earth (in m/s)? Ignore atmospheric friction, the effects of other planets, and the rotation of the Earth. (Consider the mass of the Sun in your calculations.) Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. m/s (b) What If? The speed provided in part (a) is very difficult to achieve technologically. Often, Jupiter is used as a "gravitational slingshot" to increase the speed of a probe to the escape speed from the solar system, which is 1.85 x 104 m/s from a point on Jupiter's orbit around the Sun (if Jupiter is not nearby). If the probe is launched from the Earth's surface at a speed of 4.10 x 10 m/s relative…arrow_forward
- As shown in the figure, a roller-coaster track includes a circular loop of radius R in a vertical plane. A car of mass m is released from rest at a height h above the bottom of the circular section and then moves freely along the track with negligible energy loss due to friction. i (a) First suppose the car barely makes it around the loop; at the top of the loop, the riders are upside down and feel weightless. Find the required height h of the release point above the bottom of the loop. (Use any variable or symbol stated above along with the following as necessary: g.) h = (b) If the car is released at some point above the minimum required height, determine the amount by which the normal force on the car at the bottom of the loop exceeds the normal force on the car at the top of the loop. (Consider the moments when the car reaches the top and when it reaches the bottom again. Use any variable or symbol stated above along with the following as necessary: g.) NB - NT = The normal force…arrow_forwardOne of the more challenging elements in pairs figure skating competition is the "death spiral" (see the figure below), in which the female figure skater, balanced on one skate, is spun in a circle by the male skater. i The axis of rotation of the pair is vertical and through the toe of the skate on the male skater's leg that is bent backward, the toe being planted into the ice. During the one-armed maneuver first developed in the 1940s, the outstretched arm of the male skater must apply a large force to support a significant fraction of the female skater's weight and also to provide her centripetal acceleration. This force represents a danger to the structure of the wrist of the male skater. (a) Modeling the female skater, of mass 47.0 kg, as a particle, and assuming that the combined length of the two outstretched arms is 129 cm and that arms make an angle of 45.0° with the horizontal, what is the magnitude of the force (in N) exerted by the male skater's wrist if each turn is…arrow_forwardOne popular design of a household juice machine is a conical, perforated stainless steel basket 3.30 cm high with a closed bottom of diameter 8.00 cm and open top of diameter 14.40 cm that spins at 16000 revolutions per minute about a vertical axis. Solid pieces of fruit are chopped into granules by cutters at the bottom of the spinning cone. Then the fruit granules rapidly make their way to the sloping surface where the juice is extracted to the outside of the cone through the mesh perforations. The dry pulp spirals upward along the slope to be ejected from the top of the cone. The juice is collected in an enclosure immediately surrounding the sloped surface of the cone. Pulp Motor Spinning basket Juice spout (a) What centripetal acceleration does a bit of fruit experience when it is spinning with the basket at a point midway between the top and bottom? m/s² ---Direction--- (b) Observe that the weight of the fruit is a negligible force. What is the normal force on 2.00 g of fruit at…arrow_forward
- A satellite is in a circular orbit around the Earth at an altitude of 3.88 × 106 m. (a) Find the period of the orbit. (Hint: Modify Kepler's third law so it is suitable for objects orbiting the Earth rather than the Sun. The radius of the Earth is 6.38 × 106 m, and the mass of the Earth is 5.98 x 1024 kg.) h (b) Find the speed of the satellite. km/s (c) Find the acceleration of the satellite. m/s² toward the center of the eartharrow_forwardShown below is a waterslide constructed in the late 1800's. This slide was unique for its time due to the fact that a large number of small wheels along its length made friction negligible. Riders rode a small sled down the chute which ended with a horizontal section that caused the sled and rider to skim across the water much like a flat pebble. The chute was 9.76 m high at the top and 54.3 m long. Consider a rider and sled with a combined mass of 81.0 kg. They are pushed off the top of the slide from point A with a speed of 2.90 m/s, and they skim horizontally across the water a distance of 50 m before coming to rest. 9.76 m Engraving from Scientific American, July 1888 A (a) 20.0 m/ -54.3 m- 50.0 m (b) (a) Find the speed (in m/s) of the sled and rider at point C. 14.14 m/s (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude (in N) of the friction force the water exerts on the sled. 162.2 N (c) Find the magnitude (in N) of the…arrow_forwardA small object with mass 3.60 kg moves counterclockwise with constant angular speed 1.40 rad/s in a circle of radius 2.55 m centered at the origin. It starts at the point with position vector 2.551 m. Then it undergoes an angular displacement of 9.15 rad. (a) What is its new position vector? m (b) In what quadrant is the object located and what angle does its position vector make with the positive x-axis? ---Select--- ✓ at (c) What is its velocity? m/s (d) In what direction is it moving? (Give a negative angle.) ° from the +x direction. (e) What is its acceleration? m/s² (f) What total force is exerted on the object? Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College


An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning