PEARSON ETEXT ENGINEERING MECH & STATS
15th Edition
ISBN: 9780137514724
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Each of the sliders A and B has a mass of 1.6 kg and moves with negligible friction in its respective guide, with y being in the vertical
direction. A 22-N horizontal force is applied to the midpoint of the connecting link of negligible mass, and the assembly is released
from rest with e = 0. Calculate the speed v with which A strikes the horizontal guide when e = 90°.
0.22 m/e
22 N
0.22 m,
B
Answer: v =
i
m/s
The
2.8-kg collar is released from rest at A and slides down the inclined fixed rod in the vertical plane. The coefficient of kinetic friction
is 0.62. Calculate (a) the velocity v of the collar as it strikes the spring and (b) the maximum deflection x of the spring.
2.8 kg
0.68 m
H=0.62
59
Answers:
(a) v =
(b) x =
i
i
k = 3.4 kN/m
m/s
mm
Direct central impact occurs between a 100lbs body moving to the right at 5 ft per second and a body of weight W moving to the left at 3 ft per sec. The coefficient of restitution e = 0.5. After impact the 100lb body rebounds to the left at 2ft/s. Determine the weight W of the other body. (lbs)
Knowledge Booster
Similar questions
- Each of the sliders A and B has a mass of 2.9 kg and moves with negligible friction in its respective guide, with y being in the vertical direction. A 15-N horizontal force is applied to the midpoint of the connecting link of negligible mass, and the assembly is released from rest with 0 = 0. Calculate the speed v with which A strikes the horizontal guide when 0 = 90°. 0.44 me 15 N 0.44 m BO Answer: v = m/sarrow_forwardA steel ball with mass m strikes an initially stationary plate of mass 2m with an initial velocity v1 = 24 m/s at an angle θ1 = 60o. If the plate is constrained to move vertically, and the coefficient of restitution for the impact is e = 0.8, compute the magnitude of velocity v2 and the direction θ2 with which the ball rebounds off the plate immediately after the impact.arrow_forwardThe two disks A and B have a mass of 4 kg and 6 kg , respectively. They collide with the initial velocities shown. The coefficient of restitution is e = 0.65. Suppose that (vA)1 = 6 m/s , (vB)1 = 7 m/s Determine the magnitude of the velocity of A just after impact. Determine the angle between the x axis and the velocity of A just after impact, measured clockwise from the negative x axis. Determine the magnitude of the velocity of B just after impact. Determine the angle between the x axis and the velocity of B just after impact, measured clockwise from the positive x axis.arrow_forward
- The 3.0-kg collar is released from rest at A and slides down the inclined fixed rod in the vertical plane. The coefficient of kinetic friction is 0.38. Calculate (a) the velocity v of the collar as it strikes the spring and (b) the maximum deflection x of the spring. 3.0 kg H=0.38 Answers: (a) V = A (b) x = 56° HI 0.45 m k = 3.7 kN/m m/s mmarrow_forwardEach of the sliders A and B has a mass of 1.8 kg and moves with negligible friction in its respective guide, with y being in the vertical direction. A 11-N horizontal force is applied to the midpoint of the connecting link of negligible mass, and the assembly is released from rest with e = 0. Calculate the speed v with which A strikes the horizontal guide when e = 90°. 0.18 me 11 N 0.18 m, X-arrow_forwardA ball has a weight of 2-lb strikes a 6-lb rod at a point C which far away from A with a value of x = 3.5 ft. The velocity of the ball mass center (Vep)ı = 8 ft/s when it strikes the rod which is at rest. Assuming the coefficient of restitution after the impact e=0.2. determine the following: O After the impact, the velocity of the ball mass center (Va,)z- O After the impact, the velocity of point C (Vc)2- o The angular velocity (w) of the rod about the Zaxis. In your calculation, neglect the inertia of the vertical part of the rod AO. 05 G,arrow_forward
- The 2 kg collar is released from rest at A and slides down the inclined fixed rod in the vertical plane. The coefficient of kinetic friction is 0.40. a. Calculate the velocity of the collar when the spring has been compressed by 50mm. b. Calculate the maximum deformation of the spring. c. Calculate the velocity of the collar just before it hits the spring.arrow_forwardThe 1-1b ball A is thrown so that when it strikes the 10-1b block B it is traveling horizontally at v = 30 ft/s as shown in (Figure 1). Figure A B 1 of 1 Part A If the coefficient of restitution between A and B is e = 0.6, and the coefficent of kinetic friction between the plane and the block is μ = 0.4, determine the distance block B slides on the plane before stopping. Express your answer in feet to three significant figures. VE ΑΣΦ ↓↑ vec S = Submit Previous Answers Request Answer ? ftarrow_forwardThe 9.0 kg sphere A is held at an angle of 60° as shown, and then is released from rest and hits the B sphere which has a mass of 4.5 kg. In this crash the coefficient of restitution is e = 0.75. The sphere B is attached to the end of a rod lightweight rotating around the O point. The spring is initially non elongated and it is known that the maximum angle θ that the rod turned after the crash measured from the initial position was of 21.4º. Calculate: a) The speed with which sphere A impacts with sphere B. b) The magnitude and direction of the velocities of each sphere A and B after impact. c) The mechanical energy dissipated on impact. d) The spring stiffness constant k.arrow_forward
- Each of the sliders A and B has a mass of 3.1 kg and moves with negligible friction in its respective guide, with y being in the vertical direction. A 15-N horizontal force is applied to the midpoint of the connecting link of negligible mass, and the assembly is released from rest with θ = 0. Calculate the speed v with which A strikes the horizontal guide when θ = 90°.arrow_forward2) The collar has a mass of 2 kg and is attached to the light spring, which has a stiffness of 30 N/m and an unstretched length of 1.5 m. The collar is released from rest at A and slides up the smooth rod under the action of the constant 50-N force. Calculate the velocity u of the collar as it passes position B. Ans. V=4.93 m m 1.5 m 30° 50 N k= 30 N/m 2m 3arrow_forward: The Balls A and B are of the same size and each is attached to a 1 m cable as shown. The mass of A is 2 kg and the mass of B is 1 kg. The Ball A is released from rest with a 40o angle with the vertical direction as shown. Determine the speed of the Ball B right after the impact if the coefficient of restitution is e = 0.5. Assume the Ball B is at rest before the Ball A hits it.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY