Cosmic Perspective Fundamentals
3rd Edition
ISBN: 9780134988504
Author: Bennett, Jeffrey O., Donahue, M. (megan), SCHNEIDER, Nicholas, Voit, Mark
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 15, Problem 6QQ
Choose the best answer to each of the following Explain your reasoning.
Which of the following worlds is not considered a candidate for harboring life? (a) Europa (b) Mars (c) the Moon
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please please solve accurate and exact answer please.
Suppose there were a planet in our Solar System orbiting at a distance of 0.5 AU from theSun, and having ten times the mass and four times the radius of Earth. For reference, theEarth has a mass of 5.97 × 1024 kg and a radius of 6,378 km a) Calculate the density of this hypothetical planet.b) Based on your answer from part a), what do you think this planet would be made of?Explain your reasoning.c) Do this planet’s properties agree with the condensation theory for the formation of ourSolar System? Why or why not?
See the screenshot uploaded. Answer in a step-by-step format, add diagrams, and detailed side notes for a better understanding. For a more clear response please answer on paper Thank you!
Chapter 15 Solutions
Cosmic Perspective Fundamentals
Ch. 15 - Choose the best answer to etch of the following....Ch. 15 - Choose the best answer to etch of the following ....Ch. 15 - Choose the best answer to each of the following...Ch. 15 - Choose the best answer to each of the following...Ch. 15 - Choose the best answer to each of the following...Ch. 15 - Choose the best answer to each of the following...Ch. 15 - Choose the best answer to each of the following...Ch. 15 - Choose the best answer to each of the following...Ch. 15 - Choose the best answer to each of the following...Ch. 15 - Choose the best answer to each of the following...
Ch. 15 - Choose the best answer to each of the following...Ch. 15 - Choose the best answer to etch of the following....Ch. 15 - Explain all answers clearly, with complete...Ch. 15 - Explain all answers clearly, with complete...Ch. 15 - Explain all answers clearly, with complete...Ch. 15 - Explain all answers clearly, with complete...Ch. 15 - Explain all answers clearly, with complete...Ch. 15 - Prob. 18SEQCh. 15 - Explain all answers clearly, with complete...Ch. 15 - Prob. 20SEQCh. 15 - Explain all answers clearly, with complete...Ch. 15 - Explain all answers clearly, with complete...Ch. 15 - Explain all answers clearly, with complete...
Additional Science Textbook Solutions
Find more solutions based on key concepts
35. Consider the reaction.
The graph shows the concentration of Br2 as a function of time.
a. Use the g...
Chemistry: Structure and Properties (2nd Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
10. Two friends watch a jogger complete a 400 m lap around the track in 100 s. One of the friends states, “The ...
College Physics: A Strategic Approach (3rd Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Your goal is to try and make the timeline of the Perseverance mission play out the way you remember it. You want to make sure that the Perseverance rover gets built and sent to Mars, just like your "memory of the future", i.e. your memory of the summer of 2020. In the space provided below, write a description, in your own words, of why the Perseverance rover has the potential to do great science. Here are the things to focus on: What are the two or three most special things about Perseverance, when it comes to the search for possible ancient life on Mars? In particular, you want to make sure to describe and explain the one particular thing that Perseverance will hopefully do, which will start the long process of giving scientists the opportunity to learn about Mars in a way they never could do before.arrow_forwardPlease help me answer part A and Barrow_forwardWhich of the following is least reasonable regarding the difficulty in contacting extraterrestrial life using space flight and radio communication. Group of answer choices Space flight to the nearest star would take thousands of years with current technology. Even if another intelligent civilization is within a few hundred light-years of us, conversations would be very slow with a turnaround time of decades or even centuries. The spacecraft that NASA sent to Proxima Centauri a few years ago should be approaching its target within a decade or two, depending on solar wind conditions. Earth has been broadcasting at radio wavelengths since the 1930's, so any civilization within a radius of about 100 light-years or so could have received the broadcast by now. Without some major breakthrough, interstellar space flight is totally impractical.arrow_forward
- Suppose there were a planet in our Solar System orbiting at a distance of 0.5 AU from the Sun, and having ten times the mass and four times the radius of Earth. For reference, the Earth has a mass of 5.97 × 10*24 kg and a radius of 6,378 km. a)Calculatethe density of this hypothetical planet. b)Basedon your answer from part a), what do you think this planet would be made of? Explain your c)Dothis planet’s properties agree with the condensation theory for the formation of our Solar System? Why or why not?arrow_forwardWhich of the following is least reasonable regarding the concept of a habitable zone? Group of answer choices M-type stars have wider habitable zones than G-type stars. It is a region around a star where liquid water could be found on a planet's surface. The habitable zone of a less massive star would be closer to the star. In the course of millions of years, our habitable zone will slowly shift from Earth to Mars. The Galactic habitable zone cannot be too close to the Galactic center because the radiation from the bright stars and supernovae in the crowded inner part of the Galaxy would probably be detrimental to life.arrow_forwardWhat is the best way to determine if a exoplanet has life inside it? Group of answer choices Detect the star the exoplanet is orbiting and compare it to the Sun. Detect the exoplanet and determine if it is in the habitable zone of the star. Detect the exoplanet and study the atmosphere of the exoplanet. Detect the exoplanet and determine its age to see if it is similar to the age of the Earth.arrow_forward
- Tutorial A radio broadcast left Earth in 1925. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.30 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.85. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1925, distance in light years = time since broadcast left Earth. d = tnow - tbroadcast d = light years Submit Skip (you cannot come back)arrow_forwardImpact Energy. Consider a comet about 2 kilometers across with a mass of 4 × 1012 kg. Assume that it crashes into Earth at a speed of 30,000 meters per second (about 67,000 miles per hour). a. What is the total energy of the impact, in joules? (Hint: The kinetic energy formula tells us that the impact energy in joules will be 1 × m × v2, where 2 m is the comet’s mass in kilograms and v is its speed in meters per second.) b. A 1-megaton nuclear explosion releases about 4 × 1015 joules of energy. How many such nuclear bombs would it take to release as much energy as the comet impact? c. Based on your answers, comment on the degree of devastation the comet might cause.arrow_forwardTutorial A radio broadcast left Earth in 1923. How far in light years has it traveled? If there is, on average, 1 star system per 400 cubic light years, how many star systems has this broadcast reached? Assume that the fraction of these star systems that have planets is 0.50 and that, in a given planetary system, the average number of planets that have orbited in the habitable zone for 4 billion years is 0.40. How many possible planets with life could have heard this signal? Part 1 of 3 To figure out how many light years a signal has traveled we need to know how long since the signal left Earth. If the signal left in 1923, distance in light years = time since broadcast left Earth. d = tnow - broadcast d = 97 97 light years Part 2 of 3 Since the radio signal travels in all directions, it expanded as a sphere with a radius equal to the distance it has traveled so far. To determine the number of star systems this signal has reached, we need to determine the volume of that sphere. V, = Vb…arrow_forward
- For which of the following reasons (select all that apply), is it useful/important to send rovers to other planetary bodies in our solar system? O a. The engineering innovations developed to produce successful/viable rovers and landers on other planets can help lead to developments in the technology used here on Earth that may have taken far more time to develop without the limitations provided by space travel to foreign worlds. O b. The data collected can help improve our understanding of the evolution/development of our solar system. O. Rovers/landers can be outfitted with various tools and equipment that can be used to inform of us of the geological histories of each of the planets they visit. O d. More direct probes of the planetary surface are possible to detect signs of the building blocks of life. O e. Rock samples can be used to calibrate our estimations of the age of the solar system.arrow_forwardAs discussed in class, the moon is receding from the Earth due to tides at a rate of ~4 cm/year. Let’s assume that rate has been constant throughout time (it wasn’t, but we can use it to illustrate some key points). Its current semi-major axis is 384,400 km.a) If the moon formed 4.5 billion years ago and has been receding from the Earth ever since, what was its original semi-major axis? What was its original orbital period?b) What would the apparent size of the Moon have been in the sky as viewed from Earth? That is, in Hmwk 2, you were told the diameter of the Moon spans about 0.5o when viewed from Earth today. What would it have been when the Moon first formed? Reletive Numbers Relevant Numbers1 AU = 150,000,000 km = 1.5x108 kmEccentricity of Earth’s Orbit: 0.0167Radius of Earth: 6371 kmMass of Earth: 5.96x1024 kgRadius of the Moon: 1737 kmMass of Moon: 7.34x1022 kgRadius of Mars: 3390 kmMass of Mars: 6.4x1023 kgRadius of the Sun: R⦿=696,300 kmMass of the Sun: M⦿=2x1030…arrow_forwardWe need to create a scale model of the solar system (by shrinking the sun down to the size of a basketball or ~30cm). First, we will need to scale down actual solar system dimensions (planet diameters and average orbital radiuses) by converting our units. There are two blank spaces in the table below. We will effectively fill in the missing data in the next set of questions. Use the example below to help you. Example: What is the scaled diameter of Mercury if the Sun is scaled to the size of a basketball (30 cm)? The actual diameter of Mercury is 4879 km The Sun's diameter is 1392000 km If the Sun is to be reduced to the size of a basketball, then the conversion we need for this equation will be: 30cm1392000km Here is how we run the conversion: 4879km×30cm1392000km=0.105cm or 0.11cm if we were to round our answer. This means that if the sun in our model is the size of a basketball, Mercury is the size of a grain of sand. We can also see by looking at the table, that we would…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY