
College Physics Volume 1 (Chs. 1-16); Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics (10th Edition)
10th Edition
ISBN: 9780134151779
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 68GP
(a)
To determine
The rms speed of the hydrogen atom.
(b)
To determine
The mass of an atom for half of the rms speed of hydrogen.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all steps
Make up an application physics principle problem that provides three (3) significant equations based on the concepts of capacitors and ohm's law.
A straight horizontal garden hose 38.0 m long with an interior diameter of 1.50 cm is used to deliver 20oC water at the rate of 0.590 liters/s. Assuming that Poiseuille's Law applies, estimate the pressure drop (in Pa) from one end of the hose to the other.
Chapter 15 Solutions
College Physics Volume 1 (Chs. 1-16); Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics (10th Edition)
Ch. 15 - In the ideal-gas equation could you give the...Ch. 15 - True or false? Equal masses of two different gases...Ch. 15 - How does evaporation of perspiration from your...Ch. 15 - The ideal-gas law is sometimes written in the form...Ch. 15 - (a) If you double the absolute temperature of an...Ch. 15 - Chemical reaction rates slow down as the...Ch. 15 - True or false? When two ideal gases are mixed,...Ch. 15 - Is it possible for a gas to expand and lose energy...Ch. 15 - The gas inside a balloon will always have a...Ch. 15 - When a gas expands adiabatically, it does work on...
Ch. 15 - Since Cv is defined with specific reference to a...Ch. 15 - The ratio y found in Equations 15.22 and 15.23...Ch. 15 - Prob. 1MCPCh. 15 - Prob. 2MCPCh. 15 - Prob. 3MCPCh. 15 - Prob. 4MCPCh. 15 - Prob. 5MCPCh. 15 - Prob. 6MCPCh. 15 - Assume you have n moles of an ideal gas initially...Ch. 15 - The formula U = nCvT for the change in the...Ch. 15 - For the process shown in the pV diagram in Figure...Ch. 15 - Prob. 10MCPCh. 15 - The gas shown in Figure 15.29 is in a completely...Ch. 15 - Prob. 12MCPCh. 15 - A cylindrical tank has a tight-fitting piston that...Ch. 15 - Prob. 2PCh. 15 - A 3.00 L tank contains air at 3.00 atm and 20.0C....Ch. 15 - A 20.0 L tank contains 0.225 kg of helium at...Ch. 15 - A room with dimensions 7.00 m by 8.00 m by 2.50 m...Ch. 15 - Three moles of an ideal gas are in a rigid cubical...Ch. 15 - A large cylindrical tank contains 0.750 m3 of...Ch. 15 - A 1.0 L canister contains 0.2 mole of helium gas....Ch. 15 - The gas inside a balloon will always have a...Ch. 15 - Prob. 10PCh. 15 - A diver observes a bubble of air rising from the...Ch. 15 - At an altitude of 11,000 m (a typical cruising...Ch. 15 - If a certain amount of ideal gas occupies a volume...Ch. 15 - Calculate the volume of 1.00 mol of liquid water...Ch. 15 - What volume does 2 mol of hydrogen gas (H2) occupy...Ch. 15 - The atmosphere of the planet Mars is 95.3% carbon...Ch. 15 - Find the mass of a single sulfur (S) atom and an...Ch. 15 - Prob. 18PCh. 15 - In the air we breathe at 72F and 1.0 atm pressure,...Ch. 15 - We have two equal-size boxes. A and B. Each box...Ch. 15 - Prob. 21PCh. 15 - Prob. 22PCh. 15 - A container of helium gas is heated until the...Ch. 15 - If 5 g of liquid helium is converted into a gas at...Ch. 15 - At what temperature is the root-mean-square speed...Ch. 15 - Where is the hydrogen? The average temperature of...Ch. 15 - Prob. 27PCh. 15 - STP. The conditions of standard temperature and...Ch. 15 - Prob. 29PCh. 15 - (a) How much heat does it take to increase the...Ch. 15 - (a) If you supply 1850 J of heat to 2.25 moles of...Ch. 15 - Suppose 100 J of heat flows into a diatomic ideal...Ch. 15 - Perfectly rigid containers each hold n moles of...Ch. 15 - Assume that the gases in this problem can be...Ch. 15 - A metal cylinder with rigid walls contains 2.50...Ch. 15 - A gas under a constant pressure of 1.50 105 Pa...Ch. 15 - Two moles of an ideal gas are heated at constant...Ch. 15 - Three moles of an ideal monatomic gas expand at a...Ch. 15 - Prob. 39PCh. 15 - Prob. 40PCh. 15 - A gas in a cylinder expands from a volume of 0.110...Ch. 15 - A gas in a cylinder is held at a constant pressure...Ch. 15 - Five moles of an ideal monatomic gas with an...Ch. 15 - When a system is taken from state a to state b in...Ch. 15 - An ideal gas expands while the pressure is Kept...Ch. 15 - You are keeping 1.75 moles of an ideal gas in a...Ch. 15 - Prob. 47PCh. 15 - A cylinder with a movable piston contains 3.00 mol...Ch. 15 - Figure 15.32 show a pV diagram for an ideal gas in...Ch. 15 - Figure 15.33 shows a pV diagram for an ideal gas...Ch. 15 - The pV diagram in Figure 15.34 shows a process abc...Ch. 15 - A volume of air (assumed to be an ideal gas) is...Ch. 15 - In the process illustrated by the pV diagram in...Ch. 15 - A cylinder contains 0.250 mol of carbon dioxide...Ch. 15 - Heating air in the lungs. Human lung capacity...Ch. 15 - The graph in Figure 15.37 shows a pV diagram for...Ch. 15 - An ideal gas at 4.00 atm and 350 K is permitted to...Ch. 15 - An experimenter adds 970 J of heat to 1.75 mol of...Ch. 15 - Heat Q flows into a monatomic ideal gas, and the...Ch. 15 - A player bounces a basketball on the floor,...Ch. 15 - In the pV diagram shown in Figure 15.38, 85.0 J of...Ch. 15 - Modern vacuum pumps make it easy to attain...Ch. 15 - Prob. 63GPCh. 15 - The effect of altitude on the lungs. (a) Calculate...Ch. 15 - (a) Calculate the mass of nitrogen present in a...Ch. 15 - An automobile tire has a volume of 0.0150 m3 on a...Ch. 15 - A student in a physics lab course has the task of...Ch. 15 - Prob. 68GPCh. 15 - Atmosphere of Titan. Titan, the largest satellite...Ch. 15 - Helium gas expands slowly to twice its original...Ch. 15 - A cylinder with a piston contains 0.250 mol of...Ch. 15 - You blow up a spherical balloon to a diameter of...Ch. 15 - A bicyclist uses a tire pump whose cylinder is...Ch. 15 - The bends. If deep-sea divers rise to the surface...Ch. 15 - 75. Figure 15.39 shows a pV diagram for 0.0040...Ch. 15 - Figure 15.40 Problem 76. The graph in Figure 15.40...Ch. 15 - A flask with a volume of 1.50 L, provided with a...Ch. 15 - Initially at a temperature of 80.0C, 0.28 m3 of...Ch. 15 - In a cylinder, 4.00 mol of helium initially at...Ch. 15 - Starting with 2.50 mol of N2 gas (assumed to be...Ch. 15 - Insulating windows. One way to improve insulation...Ch. 15 - Estimate the ratio of the thermal conductivity of...Ch. 15 - The rate of effusionthat is, the leakage of a gas...Ch. 15 - Prob. 84PPCh. 15 - In another test, the gas is put into a cylinder...Ch. 15 - You have a cylinder that contains 500 L of the gas...Ch. 15 - In a hospital, pure oxygen may be delivered at 50...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.arrow_forwardA rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case). Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all stepsarrow_forwardShrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all stepsarrow_forward
- A circular loop of wire with radius 0.0480 m and resistance 0.163 Ω is in a region of spatially uniform magnetic field, as shown in the following figure (Figure 1). The magnetic field is directed out of the plane of the figure. The magnetic field has an initial value of 7.88 T and is decreasing at a rate of -0.696 T/s . Is the induced current in the loop clockwise or counterclockwise? What is the rate at which electrical energy is being dissipated by the resistance of the loop? Please explain all stepsarrow_forwardA 0.333 m long metal bar is pulled to the left by an applied force F and moves to the left at a constant speed of 5.90 m/s. The bar rides on parallel metal rails connected through a 46.7 Ω resistor, as shown in (Figure 1), so the apparatus makes a complete circuit. You can ignore the resistance of the bar and rails. The circuit is in a uniform 0.625 T magnetic field that is directed out of the plane of the figure. Is the induced current in the circuit clockwise or counterclockwise? What is the rate at which the applied force is doing work on the bar? Please explain all stepsarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Calculate the magnitude of the emf induced in the circuit. Find the direction of the current induced in the circuit. Calculate the current through the resistor.arrow_forward
- In the figure, a conducting rod with length L = 29.0 cm moves in a magnetic field B→ of magnitude 0.510 T directed into the plane of the figure. The rod moves with speed v = 5.00 m/s in the direction shown. When the charges in the rod are in equilibrium, which point, a or b, has an excess of positive charge and where does the electric field point? What is the magnitude E of the electric field within the rod, the potential difference between the ends of the rod, and the magnitude E of the motional emf induced in the rod? Which point has a higher potential? Please explain all stepsarrow_forwardExamine the data and % error values in Data Table 2 where the mass of the pendulum bob increased but the angular displacement and length of the simple pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the mass of the pendulum bob, to within a reasonable percent error.arrow_forwardPlease graph, my software isn't working - Data Table 4 of Period, T vs √L . (Note: variables are identified for graphing as y vs x.) On the graph insert a best fit line or curve and display the equation on the graph. Thank you!arrow_forward
- I need help with problems 93 and 94arrow_forwardSince the instruction says to use SI units with the correct sig-fig, should I only have 2 s for each trial in the Period column? Determine the theoretical period of the pendulum using the equation T= 2π √L/g using the pendulum length, L, from Data Table 2. Calculate the % error in the periods measured for each trial in Data Table 2 then recordarrow_forwardA radiography contingent are carrying out industrial radiography. A worker accidentally crossed a barrier exposing themselves for 15 seconds at a distance of 2 metres from an Ir-192 source of approximately 200 Bq worth of activity. What dose would they have received during the time they were exposed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning