OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
5th Edition
ISBN: 9781285460369
Author: STANITSKI
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 62QRT
Interpretation Introduction
Interpretation:
The
Concept Introduction:
Solubility product relates the solubility of a salt with the concentration of ions present in the salt. Solubility product holds a direct relation with the solubility of the salt. The solubility product is the ability of the solid to dissolve in aqueous solution. The more the solubility product the more the solid dissolves in solution. It is denoted as
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) A buffer solution contains 0.350 M ammonium bromide and 0.400 M ammonia.If 0.0452 moles of perchloric acid are added to 225 mL of this buffer, what is the pH of the resulting solution ?(Assume that the volume change does not change upon adding perchloric acid)pH =
2) A buffer solution contains 0.320 M hypochlorous acid and 0.383 M potassium hypochlorite.If 0.0405 moles of hydrochloric acid are added to 225 mL of this buffer, what is the pH of the resulting solution ?(Assume that the volume change does not change upon adding hydrochloric acid)pH
To fill a 500 mL volumetric flask, 40 g of ammonium chloride (NH4Cl) and 3.2 g of ammonia (NH3) are added along with water. Given the Kb of NH3 is 1.8 × 10−5, the pH of this buffer is...
A buffer solution is formed by adding 0.200 moles of solid potassium nitrite, KNO₂, to 500.0 ml of 0.600 M Nitrous acid, HNO₂ solution. You may assume that the change in volume is negligible upon addition of the solid.
Calculate the pH of the buffer solution
Calculate the pH of the buffer solution after the addition of 8.00 ml of 1.50 M Ba(OH)₂.
Chapter 15 Solutions
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
Ch. 15.1 - Predict whether 1.0 L of each solution is a...Ch. 15.1 - Calculate the pH of blood containing 0.0020-M...Ch. 15.1 - Prob. 15.2ECh. 15.1 -
Calculate the ratio of [] to [] in blood at a...Ch. 15.1 - Use the data in Table 15.1 to select a conjugate...Ch. 15.1 -
Calculate the mole ratio of sodium acetate and...Ch. 15.1 - Calculate the pH of these buffers.
Ch. 15.1 - If an abnormally high CO2 concentration is present...Ch. 15.1 - Calculate the minimum mass (g) of KOH that would...Ch. 15.2 - For the titration of 50.0 mL of 0.100-M HCl with...
Ch. 15.2 - Draw the titration curve for the titration of 50.0...Ch. 15.2 - Use the Ka expression and value for acetic acid to...Ch. 15.2 - Explain why the curve for the titration of acetic...Ch. 15.4 - Write the Ksp expression for each of these...Ch. 15.4 - The Ksp of AgBr at 100 C is 5 1010. Calculate the...Ch. 15.4 - A saturated solution of silver oxalate. Ag2C2O4....Ch. 15.4 - Prob. 15.9CECh. 15.5 - Consider 0.0010-M solutions of these sparingly...Ch. 15.5 - Prob. 15.11PSPCh. 15.5 - Calculate the solubility of PbCl2 in (a) pure...Ch. 15.5 - Prob. 15.13PSPCh. 15.6 - (a) Determine whether AgCl precipitates from a...Ch. 15.6 - Prob. 15.15PSPCh. 15 - Prob. 1SPCh. 15 - Choose a weak-acid/weak-base conjugate pair from...Ch. 15 - Prob. 4SPCh. 15 - Define the term buffer capacity.Ch. 15 - What is the difference between the end point and...Ch. 15 - What are the characteristics of a good acid-base...Ch. 15 - A strong acid is titrated with a strong base, such...Ch. 15 - Repeat the description for Question 4, but use a...Ch. 15 - Use Le Chatelier’s principle to explain why PbCl2...Ch. 15 - Describe what a complex ion is and give an...Ch. 15 - Define the term “amphoteric”.
Ch. 15 - Distinguish between the ion product (Q) expression...Ch. 15 - Describe at least two ways that the solubility of...Ch. 15 - Briefly describe how a buffer solution can control...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Identify each pair that could form a buffer. (a)...Ch. 15 - Many natural processes can be studied in the...Ch. 15 - Which of these combinations is the best to buffer...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Without doing calculations, determine the pH of a...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Select from Table 15.1 a conjugate acid-base pair...Ch. 15 - Calculate the mass of sodium acetate, NaCH3COO,...Ch. 15 - Calculate the mass in grams of ammonium chloride,...Ch. 15 - A buffer solution can be made from benzoic acid,...Ch. 15 - A buffer solution is prepared from 5.15 g NH4NO3...Ch. 15 - You dissolve 0.425 g NaOH in 2.00 L of a solution...Ch. 15 - A buffer solution is prepared by adding 0.125 mol...Ch. 15 - If added to 1 L of 0.20-M acetic acid, CH3COOH,...Ch. 15 - If added to 1 L of 0.20-M NaOH, which of these...Ch. 15 - Calculate the pH change when 10.0 mL of 0.100-M...Ch. 15 - Prob. 29QRTCh. 15 - Prob. 30QRTCh. 15 - Prob. 31QRTCh. 15 - The titration curves for two acids with the same...Ch. 15 - Explain why it is that the weaker the acid being...Ch. 15 - Prob. 34QRTCh. 15 - Consider all acid-base indicators discussed in...Ch. 15 - Which of the acid-base indicators discussed in...Ch. 15 - It required 22.6 mL of 0.0140-M Ba(OH)2 solution...Ch. 15 - It took 12.4 mL of 0.205-M H2SO4 solution to...Ch. 15 - Vitamin C is a monoprotic acid. To analyze a...Ch. 15 - An acid-base titration was used to find the...Ch. 15 - Calculate the volume of 0.150-M HCl required to...Ch. 15 - Calculate the volume of 0.225-M NaOH required to...Ch. 15 - Prob. 43QRTCh. 15 - Prob. 44QRTCh. 15 - Prob. 45QRTCh. 15 - Explain why rain with a pH of 6.7 is not...Ch. 15 - Identify two oxides that are key producers of acid...Ch. 15 - Prob. 48QRTCh. 15 - Prob. 49QRTCh. 15 - Prob. 50QRTCh. 15 - Prob. 51QRTCh. 15 - A saturated solution of silver arsenate, Ag3AsO4,...Ch. 15 - Prob. 53QRTCh. 15 - Prob. 54QRTCh. 15 - Prob. 55QRTCh. 15 - Prob. 56QRTCh. 15 - Prob. 57QRTCh. 15 - Prob. 58QRTCh. 15 - Prob. 59QRTCh. 15 - Prob. 60QRTCh. 15 - Prob. 61QRTCh. 15 - Prob. 62QRTCh. 15 - Prob. 63QRTCh. 15 - Prob. 64QRTCh. 15 - Predict what effect each would have on this...Ch. 15 - Prob. 66QRTCh. 15 - Prob. 67QRTCh. 15 - The solubility of Mg(OH)2 in water is...Ch. 15 - Prob. 69QRTCh. 15 - Prob. 70QRTCh. 15 - Prob. 71QRTCh. 15 - Prob. 72QRTCh. 15 - Write the chemical equation for the formation of...Ch. 15 - Prob. 74QRTCh. 15 - Prob. 75QRTCh. 15 - Prob. 76QRTCh. 15 - Prob. 77QRTCh. 15 - Prob. 78QRTCh. 15 - Prob. 79QRTCh. 15 - Prob. 80QRTCh. 15 - Prob. 81QRTCh. 15 - Solid sodium fluoride is slowly added to an...Ch. 15 - Prob. 83QRTCh. 15 - Prob. 84QRTCh. 15 - A buffer solution was prepared by adding 4.95 g...Ch. 15 - Prob. 86QRTCh. 15 - Prob. 87QRTCh. 15 - Prob. 88QRTCh. 15 - Prob. 89QRTCh. 15 - Which of these buffers involving a weak acid HA...Ch. 15 - Prob. 91QRTCh. 15 - Prob. 92QRTCh. 15 - When 40.00 mL of a weak monoprotic acid solution...Ch. 15 - Each of the solutions in the table has the same...Ch. 15 - Prob. 95QRTCh. 15 - Prob. 97QRTCh. 15 - The average normal concentration of Ca2+ in urine...Ch. 15 - Explain why even though an aqueous acetic acid...Ch. 15 - Prob. 100QRTCh. 15 - Prob. 101QRTCh. 15 - Prob. 102QRTCh. 15 - Prob. 103QRTCh. 15 - Prob. 104QRTCh. 15 - Apatite, Ca5(PO4)3OH, is the mineral in teeth.
On...Ch. 15 - Calculate the maximum concentration of Mg2+...Ch. 15 - Prob. 107QRTCh. 15 - Prob. 108QRTCh. 15 - The grid has six lettered boxes, each of which...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Consider the nanoscale-level representations for...Ch. 15 - Prob. 112QRTCh. 15 - Prob. 113QRTCh. 15 - Prob. 114QRTCh. 15 - Prob. 115QRTCh. 15 - You want to prepare a pH 4.50 buffer using sodium...Ch. 15 - Prob. 117QRTCh. 15 - Prob. 118QRTCh. 15 - Prob. 119QRTCh. 15 - Prob. 120QRTCh. 15 - Prob. 121QRTCh. 15 - Prob. 122QRTCh. 15 - You are given four different aqueous solutions and...Ch. 15 - Prob. 124QRTCh. 15 - Prob. 126QRTCh. 15 - Prob. 15.ACPCh. 15 - Prob. 15.BCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Does the pH of the solution increase, decrease, or stay the same when you (a) Add solid sodium oxalate, Na2C2O4, to 50.0 mL of 0.015-M oxalic acid? (b) Add solid ammonium chloride to 100. mL of 0.016-M HCl? (c) Add 20.0 g NaCl to 1.0 L of 0.012-M sodium acetate, NaCH3COO?arrow_forwardDoes the pH of the solution increase, decrease, or stay the same when you (a) add solid sodium oxalate, Na2C2O4, to 50.0 mL of 0.015 M oxalic acid, H2C2O4? (b) add solid ammonium chloride to 75 mL of 0.016 M HCl? (c) add 20.0 g of NaCl to 1.0 L of 0.10 M sodium acetate, NaCH3CO2?arrow_forwardYou are given the following acidbase titration data, where each point on the graph represents the pH after adding a given volume of titrant (the substance being added during the titration). a What substance is being titrated, a strong acid, strong base, weak acid, or weak base? b What is the pH at the equivalence point of the tiration? c What indicator might you use to perform this titration? Explain.arrow_forward
- Briefly describe how a buffer solution can control the pH of a solution when strong acid is added and when strong base is added. Use NH3/NH4Cl as an example of a buffer and HCl and NaOH as the strong acid and strong base.arrow_forwardWhat is the pH of a solution that consists of 0.20 M ammonia, NH3, and 0.20 M ammonium chloride, NH4Cl?arrow_forwardA buffer is made by adding 0.18 mol/L of sodium propanoate (NaPr) to 0.12 mol/L solution of propanoic acid (HPr, K«= 1.3 x 105). Assume the volume of the solution to be 1.0 L. a) Write the chemical equation for the acid hydrolysis reaction. | b) What is the acid-base conjugate pair that governs the pH of the buffer? c) Calculate the pH of the buffer. Be sure to justify and validate any approximations used.arrow_forward
- 4 A chemistry graduate student is given 100. mL of a 0.50M methylamine (CH,NH,) solution. Methylamine is a weak base with K,=4.4 × 10 *. What mass of CH,NH,Cl should the student dissolve in the CH, NH, solution to turn it into a buffer with pH = 10.93? You may assume that the volume of the solution doesn't change when the CH,NH, Cl is dissolved in it. Be sure your answer has a unit symbol, and round it to 2 significant digits. olo Ar x10arrow_forwardconsider the titration of 50.0 mL of 0.10 M acetic acid with NaOH. drag and drop each amount of NaOH added (to the acetic acid) Into the appropriate resulting pH. In other words, determine the pH of the final solution after each volume of NaOH has been added. Will the resulting solutions be acidic, basic, or neutral? Consider the stration of 50.0 ml of 0.10 M acetic acid (HC₂H₂O₂. K, -18 x 10) with NaOH. Drag and drop each amount of NaOH added to the acetic acid) into the appropriate resulting pH. In other words determine the pH of the final solution after each volume of NaOH has been added. Will the resulting solution be acidic, basic, or neutra? Acidic Neutral Basic Drag and drop your selection from the following list to complete the answer 25.0 mL (total) of 0.10 M NaOH has been added (the halfway point) 50.0 mL. (total) of 0.10 M NaOH has been added (the equivalence point) 10.0 mL (total) of 0.10 M NaOH has been added 60.0 mL (total) of 0.10 M NaOll has been added No NaOH has been…arrow_forwardAn analytical chemist is titrating 156.4 mL of a 0.3600 M solution of formic acid (H,CO,) with a 0.6800 M solution of NaOH, The p K of formic acid is 3.74. Calculate the pH of the acid solution after the chemist has added 91.45 mL of the NaOH solution to it. Note for advanced students: you may assume the final volume equals the initial volume of the solution plus the volume of NaOH solution added. Round your answer to 2 decimal places. alo pH =|| Explanation Check 2021 McGraw-Hill Education. Al Rights Reserved. Terms of Use I Privacy Accessibility O 1:0 acer S Faarrow_forward
- Calculate the pH of a bicarbonate/carbonate buffer in which the concentration of sodium bicarbonate (NaHCO 3) is always 0.20 M, but the concentration of sodium carbonate (Na 2CO 3) corresponds to each of the following values: (a) 0.20 M; (b) 0.40 M; (c) 0.10 M.arrow_forwardA buffer is made using 100.0 mL of 0.100 M CH3 CH2 COOH (propanoic acid) and 100.0 mL of 0.100 M NACH3 CH2 COO (sodium propanoate). A) Explain in your own words what will occur (at the molecular level) when an nitric acid is added to the buffer? What would be the effect on the pH? B) Explain in your own words what will occur when LIOH is added tot he buffer? What would be the effect on the [H+]?arrow_forwardA buffer system is prepared by combining 0.603 moles of ammonium chloride (NH4CI) and 0.713 moles of ammonia (NH3). What will the solution pH be if 0.239 moles of the nitric acid (HNO3) is added to the solution. Nitric acid is a strong acid. The K₁ of ammonia is 1.8 x 10-5. (Two decimal places)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Acid-Base Titration | Acids, Bases & Alkalis | Chemistry | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=yFqx6_Y6c2M;License: Standard YouTube License, CC-BY