The Cosmic Perspective (9th Edition)
9th Edition
ISBN: 9780134874364
Author: Jeffrey O. Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 15, Problem 56EAP
a.
To determine
To Compare: The brightness of two stars having apparent magnitude
b.
To determine
To Compare: luminosity of two stars having absolute magnitude
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How does one go about these questions?
Tutorial
Two stars have the same apparent magnitude, my = 14, but Star A has a parallax of 0.060 arc seconds and Star B has a parallax of 0.040 arc seconds.
Which star is farther from Earth?
What are their distances (in pc)?
What are their absolute magnitudes?
Which star is more massive?
Part 1 of 4
Which star is farther from Earth? Using the parallax equation we see that the distance is inversely related to the parallax by:
1
Parc seconds
d pc
Which star has the smaller parallax?
O Star A
O Star B
"51 Pegasi" is the name of the first normal star (besides the Sun) around which a planet was discovered. It is in the constellation Pegasus the horse. Its parallax is measured to be 0.064 arcsec.
a. What is its distance from us?
b. The apparent brightness is 1.79 × 10-10 J/(s·m2 ). What is the luminosity? How does that compare with that of the Sun? Look up the temperature: how do
Chapter 15 Solutions
The Cosmic Perspective (9th Edition)
Ch. 15 - Prob. 1VSCCh. 15 - Prob. 2VSCCh. 15 - Prob. 3VSCCh. 15 - Prob. 4VSCCh. 15 - Prob. 5VSCCh. 15 - Prob. 6VSCCh. 15 - Prob. 1EAPCh. 15 - Prob. 2EAPCh. 15 - Prob. 3EAPCh. 15 - Prob. 4EAP
Ch. 15 - Prob. 5EAPCh. 15 - Prob. 6EAPCh. 15 - Prob. 7EAPCh. 15 - Prob. 8EAPCh. 15 - Prob. 9EAPCh. 15 - Prob. 10EAPCh. 15 - Prob. 11EAPCh. 15 - Prob. 12EAPCh. 15 - Prob. 13EAPCh. 15 - Prob. 14EAPCh. 15 - Prob. 15EAPCh. 15 - Prob. 16EAPCh. 15 - Prob. 17EAPCh. 15 - Prob. 18EAPCh. 15 - Prob. 19EAPCh. 15 - Prob. 20EAPCh. 15 - Prob. 21EAPCh. 15 - Prob. 22EAPCh. 15 - Prob. 23EAPCh. 15 - Prob. 24EAPCh. 15 - Prob. 25EAPCh. 15 - Prob. 26EAPCh. 15 - Prob. 27EAPCh. 15 - Prob. 28EAPCh. 15 - Prob. 29EAPCh. 15 - Prob. 30EAPCh. 15 - Prob. 31EAPCh. 15 - Prob. 32EAPCh. 15 - Prob. 33EAPCh. 15 - Prob. 34EAPCh. 15 - Prob. 35EAPCh. 15 - Prob. 36EAPCh. 15 - Prob. 37EAPCh. 15 - Prob. 40EAPCh. 15 - Prob. 42EAPCh. 15 - Prob. 44EAPCh. 15 - Prob. 45EAPCh. 15 - Prob. 46EAPCh. 15 - Prob. 47EAPCh. 15 - Prob. 48EAPCh. 15 - Prob. 49EAPCh. 15 - Prob. 50EAPCh. 15 - Prob. 52EAPCh. 15 - Prob. 53EAPCh. 15 - Prob. 54EAPCh. 15 - Prob. 55EAPCh. 15 - Prob. 56EAPCh. 15 - Prob. 57EAPCh. 15 - Prob. 58EAPCh. 15 - Prob. 59EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- On Earth, the parallax angle measured for the star Procyon is 0.29 arcseconds. If you were to measure Procyon's parallax angle from Venus, what would the parallax angle be? (Note: Earth's orbital radius is larger than Venus's orbital radius.) A. more than 0.29 arcseconds O B. 0.29 arcseconds O C. less than 0.29 arcseconds D. zero arcseconds (no parallax)arrow_forwardChoose the correct statements concerning spectral classes of stars. (Give ALL correct answers, i.e., B, AC, BCD...) A) Neutral hydrogen lines dominate the spectrum for stars with temperatures around 10,000 K because a lot of the hydrogen is in the n=2 level. B) Hydrogen lines are weak in type O-stars because most of it is completely ionized. C) Oh Be A Fine Guy/Girl Kiss Me, is a mnemonic for remembering spectral classes. D) The spectral sequence has recently been expanded to include L, T, and Y classes. E) K-stars are dominated by lines from ionized helium because they are so hot. F) The spectral types of stars arise primarily as a result of differences in temperature.arrow_forwardConsidering absolute magnitude M, apparent magnitude m, and distance d. Compute the unknown for each of these stars: a. m = +1.6mag, d = 4.3pc. What is M? b. M = -14.3 mag, m = 10.9 mag. What is d? c. m = -5.6mag, d = 88pc. What is M? d. M = 0.9mag, d = 220pc. What is m?arrow_forward
- 1:Which star has been redshifted the most? 2:Which star is moving towards us the fastest? Star C Star D Star A Star B 3:The wavelength of this spectral feature is measured to be 600nm in the lab, and 609 in Star A. What is the radial velocity of Star A? using km/s,arrow_forwardSuppose a star has a luminosity of 7.0x1026 watts and an apparent brightness of 4.0x10-12 watt/m?. How far away is it? Give your answer in both kilometers and light-years.arrow_forwardEach choice below lists a spectral type and luminosity class for a star. Which one is a hot main sequence star? OA. spectral type 09, luminosity class I O B. spectral type 01, luminosity class V O C. spectral type M2, luminosity class I OD. spectral type M2, luminosity class Varrow_forward
- 12. A star with spectral type MO has a surface temperature of 3750 K and a radius of 0.63 Rsun: How many times more luminous is this star than the Sun? (if it is less luminous enter a number less than one) Answer: Submit All Answers Last Answer: 0.0923 Incorrect, tries 1/5. Hint: Use the Luminosity equation, which says that L is proportional to R^2 T^4. If you keep these as ratios compared to the sun, your L will also come out as a ratio compared to the Sun. This star has a mass of 0.4 Msun- Using the simple approximation that we made in class, what is the main sequence lifetime of this star? You may assume that the lifetime of the sun is 1010 yr. Answer: Submit All Answers Compare this to the lifetime of a MO star listed in Table 22.1 (computed using a more sophisticated approach). Is the value you calculated in the previous problem longer or shorter than what is reported in the table? (L for longer, S for shorter) (You only get one try at this problem.) Answer: Submit All Answersarrow_forwardWhich of the following WOULD NOT characterizes the type(s) of star we would find at g, m, n, o, and p on the Hertzsprung-Russel Diagram (Figure 4) a. are all smaller than q,i,h. b. fuse hydrogen into helium. c. are called, “the main sequence”. d. fuse He into heavier elements. e. get smaller towards the right sidearrow_forwardUse this interactive simulation of stellar parallax. Change the distance to the star to values given in column 2. Write down the parallax angle in arcsec for each distance. Convert the parallax angle to radians. Calculate the distance. If your calculation is correct, your number in the last column should be similar to the number in column 2 (NOT THE SAME!). 1 AU is 4.85 x 10-6 pc (Don't write units with your answer!) Measured (true) Parallax angle n (in radians) (use 2 significant D (round your answer to 2 figures) Calculated distance Object Parallax angle (in arcsec) Distance from Position "Sun" in pc decimal places) Nearest 0.5 Intermediate 1 Farthest 1.5arrow_forward
- Stellar parallax is used as a tool to determine distances to stars. Describe how stellar parallax works. Also discuss the limiting factors in its use and the maximum distance that can be accurately measured using this technique. Do you believe this concept is unique to astronomy or used in other technical disciplines? Provide examples.arrow_forwardWhich of the following statements about stellar parallax is true? A. We observe all stars to exhibit at least a slight amount of parallax. B. Stellar parallax was first observed by ancient Greek astronomers. O C. The amount of parallax we see depends on how fast a star is moving relative to us. D. It takes at least 10 years of observation to measure a star's parallax. OE. The closer a star is to us, the more parallax it exhibits.arrow_forwardStellar Classification and H-R Diagram Placement (40 points available). a. Where is your star located on the H-R diagram (luminosity class/region of the diagram, spectral class, luminosity/brightness)? How does this compare to that of The sun ? Discuss the inferences of the specific placement and stellar classification of your star with respect to mass, size/radius, color/temperature, composition? c. Discuss how this placement on the diagram relates to the star’s observed stage of evolution, previous evolution, and expected future evolutionary path. How does this compare to that of the Sun? d. What is the estimated total lifespan of your star and what is the estimated age of your star right now? How does this compare to that of the Sun? All of them is about Lutyen star .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning