Traffic and Highway Engineering - With Mindtap
Traffic and Highway Engineering - With Mindtap
5th Edition
ISBN: 9781305360990
Author: Garber
Publisher: CENGAGE L
Question
Book Icon
Chapter 15, Problem 4P
To determine

(a)

Using the vertical curvature determine minimum length of vertical curve.

Expert Solution
Check Mark

Answer to Problem 4P

579ft

Explanation of Solution

Given information:

Station (535+24.25)

Elevation 300ft

Grades G1=+2%

Grades G2=1%

Design speed of 65mi/h.

Calculation:

Length of curve is given by formula,

L=KA......(1)

A is the grade difference between G1=+2% and G2=1%

A=G1-G2A=2-(-1)A=3%

Rate of vertical curvature from textbook Table 15.4 which is based on stopping sight distance K=65mph=193

  Traffic and Highway Engineering - With Mindtap, Chapter 15, Problem 4P

Substitute in equation (1) we get,

L=KAL=193×3L=579ft

Minimum length of vertical curve is 579ft.

To determine

(b)

Stations and elevations of BVC and EVC.

Expert Solution
Check Mark

Answer to Problem 4P

Station at BVC is (532+34.75) and station at EVC is (532+13.75).

Tangent elevation at BVC is 294.21ft and at EVC is 297.1ft.

Explanation of Solution

Given information:

Station (535+24.25)

Elevation 300ft

Grades G1=+2%

Grades G2=1%

Design speed of 65mi/h.

Calculation:

BVC station=300ft elevation station-L2BVC station=(532+24.25)5792BVC station=(532+34.75)

EVC station=300ft elevation station+L2EVC station=(532+24.25)+5792EVC station=(532+13.75)

Therefore station at BVC is (532+34.75) and station at EVC is (532+13.75).

Tangent elevation at BVC=Y-G1x200Y is elevation point and x is elevation at length of curve.Tangent elevation at BVC=300-2×579200Tangent elevation at BVC=294.21ft

Tangent elevation at EVC=Y+G2x200Y is elevation point and x is elevation at length of curve.Tangent elevation at EVC=300+( 1)×579200Tangent elevation at EVC=297.1ft

Therefore tangent elevation at BVC is 294.21ft and at EVC is 297.1ft.

To determine

(c)

Elevation at each 100ft station.

Expert Solution
Check Mark

Answer to Problem 4P

Station BVC distance

ft(x)

Tangent elevationoffsetCurve elevation(Tangent elevation)
532+34.750294.210294.21
533+0065.25295.520.12295.4
534+00165.25297.520.71296.81
535+00265.25299.520.83297.69
536+00365.25301.523.46298.06
537+00465.25303.525.61297.91
538+00565.25305.528.28297.24
538+13.75579305.798.69297.1

Explanation of Solution

Given information:

Station (535+24.25)

Elevation 300ft

Grades G1=+2%

Grades G2=1%

Design speed of 65mi/h.

Calculation:

Determine the offset,

Y=Ax2200Lx=distance from BVC elevation=532+24.75-533=65.25Y=3×65.252200×579Y=0.12ft

Curve elevation=Elevation at tangent-offsetCurve elevation=(294.21+ 65.25 100×2)0.12Curve elevation=295.52-0.12Curve elevation=295.40ft

For every 100ft station the values are tabulated below,

Station BVC distance

ft(x)

Tangent elevationoffsetCurve elevation(Tangent elevation)
532+34.750294.210294.21
533+0065.25295.520.12295.4
534+00165.25297.520.71296.81
535+00265.25299.520.83297.69
536+00365.25301.523.46298.06
537+00465.25303.525.61297.91
538+00565.25305.528.28297.24
538+13.75579305.798.69297.1
To determine

(d)

Station and elevation of high point.

Expert Solution
Check Mark

Answer to Problem 4P

Station of high point=536+20.75

Elevation of high point=298.07ft

Explanation of Solution

Given information:

Station (535+24.25)

Elevation 300ft

Grades G1=+2%

Grades G2=1%

Design speed of 65mi/h.

Calculation:

Distance of the high point of BVC is given by,

Xhigh=LG1( G 1 - G 2 )Xhigh=579×2( 2-( -1 ))Xhigh=386ft

Station of high point=station of BVC+XhighStation of high point=(532+34.75)+386Station of high point=(532+34.75)+3+86Station of high point=536+20.75

Difference beteween both elevation of BVC and highpoint.

Elevation of high point=Tangent elevation of BVC+YhighElevation of high point=294.21+3.86Elevation of high point=298.07ft

Conclusion:

Therefore elevation of high point is 298.07ft and Station of high point is 536+20.75

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A floor consists of 8 steel beams/girders supporting three 1-way slab panels. The   beams are supported on 6 columns around the perimeter of the roof. The roof is   subjected to a uniform pressure of 150 psf . All beams and girders weigh 90lb//ft.   Use free-body diagrams and statics equations to determine the load and reactions   on all the beams (Beam 1, 2, 3 and 4), girders (Girders 1 and 2), and columns   (Columns 1, 2 and 3).   (we only focused on one-way slabs in the class + pls include FBDs)
Design an intake tower with gates meet the following requirement: • Normal water surface elevation = 100 m mean sea level • Max. reservoir elevation = 106 m msl • Min. reservoir elevation = 90 m msl • Bottom elevation = 81m msl • Flow rate=57369.6 m³/day.. Velocity = 0.083 m/s ⚫c=0.6, Density for water =1000 kg/m³. Density for concrete =2310 kg/m³ Estimate water elevation that make safety factor =1 ร 4 m Uppr gate 2m 1 m Lower gate 2m Gate 6m 2m 4 m ร 2 m wz
4. The storm hyetograph below produced 530 acre-ft of runoff over the 725-acre Green River watershed. Plot the storm hyetograph and compute and plot the excess rainfall hyetograph using the op-index method. Time (hours) 0-33-66-99-12 12-15 Rainfall Intensity (in/hr) 0.2 0.8|1.2 1.8 0.9
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning