Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
16th Edition
ISBN: 9781259663895
Author: KRAUSKOPF, Konrad B.
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 15, Problem 49MC
A batholith is a
- a. fissure from which groundwater emerges
- b. natural rock pillar
- c. large body of intrusive rock
- d. volcanic cone
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
In the figure Q = 5.7 nC and all other quantities are accurate to 2 significant figures. What is the magnitude of the force on the charge Q? (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)
Now add a fourth charged particle, particle 3, with positive charge q3, fixed in the yz-plane at (0,d2,d2). What is the net force F→ on particle 0 due solely to this charge? Express your answer (a vector) using k, q0, q3, d2, i^, j^, and k^. Include only the force caused by particle 3.
For a tornadoes and hurricanes, which of the following is most critical?
an alert
a watch
a warning
a prediction
Chapter 15 Solutions
Connect with LearnSmart for Krauskopf: The Physical Universe, 16e
Ch. 15 - The most abundant element in the earths crust is...Ch. 15 - The second most abundant element is a. iron b....Ch. 15 - Minerals are a. silicon compounds b. common types...Ch. 15 - The tendency of certain minerals to split along...Ch. 15 - Feldspar is a. relatively rare in the earths crust...Ch. 15 - Quartz is a. a variety of feldspar b. a variety of...Ch. 15 - A mineral that is not a silicate is a. quartz b....Ch. 15 - The ferromagnesian minerals are usually a....Ch. 15 - Igneous rocks have been formed by a. cooling from...Ch. 15 - Rocks that have been altered by heat and pressure...
Ch. 15 - Most crustal rocks a. were formed from compacted...Ch. 15 - A general characteristic of rocks of volcanic...Ch. 15 - Foliation occurs in a. sedimentary rocks b....Ch. 15 - An example of a foliated rock is a. marble b....Ch. 15 - An example of a light-colored, coarse-grained...Ch. 15 - Limestone may be metamorphosed into a. marble b....Ch. 15 - Shale may be metamorphosed into a. marble b....Ch. 15 - Mica is present in a. marble b. chert c. basalt d....Ch. 15 - Fossils are most likely to be found in a. granite...Ch. 15 - Most earthquakes are caused by shifts of rocks...Ch. 15 - Regions in which earthquakes are frequent are also...Ch. 15 - Relative to an earthquake of magnitude 5 on the...Ch. 15 - Which one or more of the following statements...Ch. 15 - The earths crust a. has very nearly the same...Ch. 15 - The part of the earth with the greatest volume is...Ch. 15 - The radius of the earths core is roughly a. 110...Ch. 15 - The rocks of the mantle are believed to consist...Ch. 15 - Among the reasons why the earths core is believed...Ch. 15 - The chief source of the energy that powers...Ch. 15 - The earths magnetic field a. never changes b. has...Ch. 15 - If we travel around the earth, we would find that...Ch. 15 - A rock readily attacked by chemical weathering is...Ch. 15 - The principal agent of erosion is a. groundwater...Ch. 15 - Which of the following is not produced by rivers?...Ch. 15 - Glaciers produce which one or more of the...Ch. 15 - The last stage in the erosion of a river is the...Ch. 15 - Prob. 37MCCh. 15 - A fairly fast valley glacier might have a speed of...Ch. 15 - Most of the groundwater present in soil and...Ch. 15 - An aquifer is a. a river or stream on the surface...Ch. 15 - The largest amounts of sediment are deposited a....Ch. 15 - Minerals deposited by groundwater in rock fissures...Ch. 15 - Most caves are produced by the solvent action of...Ch. 15 - The chief constituent of volcanic gases is a....Ch. 15 - Prob. 45MCCh. 15 - The most common volcanic rock is a. granite b....Ch. 15 - Prob. 47MCCh. 15 - Active volcanoes are not found a. in the West...Ch. 15 - A batholith is a a. fissure from which groundwater...Ch. 15 - Arrange these elements in decreasing order of...Ch. 15 - Do silicon compounds make up less than a quarter,...Ch. 15 - What is the relationship between rocks and...Ch. 15 - What mineral is most abundant in the earths crust?...Ch. 15 - Both cleavage and crystal form are characteristic...Ch. 15 - Graphite consists of layers of carbon atoms in...Ch. 15 - In the silicate minerals each Si4+ ion is always...Ch. 15 - How could you distinguish calcite crystals from...Ch. 15 - Are the mineral grains in an igneous rock usually...Ch. 15 - Granite and rhyolite have similar compositions,...Ch. 15 - Diorite is an igneous rock that has hardened...Ch. 15 - Obsidian is a rock that resembles glass, in...Ch. 15 - In what way does calcite differ from almost all...Ch. 15 - Of what rock do coral reefs consist?Ch. 15 - What is the nature of chert and why is it so...Ch. 15 - What kind of rocks are most abundant in the earths...Ch. 15 - What happens to the density of a rock that...Ch. 15 - Why is gneiss the most abundant metamorphic rock?Ch. 15 - The mineral grains of many metamorphic rocks are...Ch. 15 - Shale is a sedimentary rock that consolidated from...Ch. 15 - (a) What is the origin of limestone? (b) What rock...Ch. 15 - Distinguish between the foliation of a metamorphic...Ch. 15 - Distinguish between quartz and quartzite.Ch. 15 - How could you distinguish (a) chert from obsidian;...Ch. 15 - How could you distinguish (a) granite from gabbro;...Ch. 15 - Name the following rocks: (a) a rock consisting of...Ch. 15 - Name the following rocks: (a) a fine-grained,...Ch. 15 - Prob. 28ECh. 15 - Each step on the Richter scale of earthquake...Ch. 15 - What can be said about an earthquake whose...Ch. 15 - Why is the mantle thought to be solid?Ch. 15 - (a) Distinguish between earthquake P and S waves....Ch. 15 - In what part of the earth does the rock motion...Ch. 15 - An earthquake occurs far from an observing station...Ch. 15 - How does the radius of the earths core compare...Ch. 15 - Where is the earths crust thinnest? Where is it...Ch. 15 - What evidence is there in favor of the idea that...Ch. 15 - What is the source of the energy that powers most...Ch. 15 - (a) Why is it believed that the earths outer core...Ch. 15 - Why does a compass needle in most places not point...Ch. 15 - Why is it unlikely that the earths magnetic field...Ch. 15 - Prob. 42ECh. 15 - Why are igneous and metamorphic rocks in general...Ch. 15 - Both marble and slate are metamorphic rocks. Would...Ch. 15 - In what way is the weathering of rock important to...Ch. 15 - Prob. 46ECh. 15 - Is there a limit to the depth to which streams can...Ch. 15 - Why are streams and rivers so effective as agents...Ch. 15 - Under what circumstances does a glacier form?Ch. 15 - Which is the more important agent of erosion...Ch. 15 - Prob. 51ECh. 15 - How is it possible for glaciers to wear down rocks...Ch. 15 - What is a water table? An aquifer?Ch. 15 - What is the immediate destination of most of the...Ch. 15 - What is the eventual site of deposition of most...Ch. 15 - Distinguish between an alluvial fan and a moraine.Ch. 15 - Why are clay minerals and quartz particles...Ch. 15 - In sand derived from the attack of waves on...Ch. 15 - What is the probable origin of the following...Ch. 15 - What characteristic landscape features do active...Ch. 15 - Prob. 61ECh. 15 - What factors determine the viscosity of a magma?...Ch. 15 - What is the cause of the holes found in many...Ch. 15 - Prob. 64ECh. 15 - (a) Why are metamorphic rocks often found near...Ch. 15 - Distinguish between a dike and a vein.
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When a warm front advances up and over a cold front, what is it called? front inversion stationary front cold front occlusion warm front occlusionarrow_forward1) Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1? Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^. 2) Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^. 3) Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0? Express your answer in terms of any or all of the following variables: k, q0, q1, q2.arrow_forwardA 85 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.35 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. (a) What (in V) is the peak emf? 7.17 V (b) At what time (in s) is the peak emf first reached? 0.196 S (c) At what time (in s) is the emf first at its most negative? 0.589 x s (d) What is the period (in s) of the AC voltage output? 0.785 Sarrow_forward
- A bobsled starts at the top of a track as human runners sprint from rest and then jump into the sled. Assume they reach 40 km/h from rest after covering a distance of 50 m over flat ice. a. How much work do they do on themselves and the sled which they are pushing given the fact that there are two men of combined mass 185 kg and the sled with a mass of 200 kg? (If you haven't seen bobsledding, watch youtube to understand better what's going on.) b. After this start, the team races down the track and descends vertically by 200 m. At the finish line the sled crosses with a speed of 55 m/s. How much energy was lost to drag and friction along the way down after the men were in the sled?arrow_forwardFor what type of force is it not possible to define a potential energy expression?arrow_forward10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram.arrow_forward
- Consider 1 mole of supercooled water at -10°C. Calculate the entropy change of the water when the supercooled water freezes at -10°C and 1 atm. Useful data: Cp (ice) = 38 J mol-1 K-1 Cp (water) 75J mol −1 K -1 Afus H (0°C) 6026 J mol −1 Assume Cp (ice) and Cp (water) to be independent of temperature.arrow_forwardThe molar enthalpy of vaporization of benzene at its normal boiling point (80.09°C) is 30.72 kJ/mol. Assuming that AvapH and AvapS stay constant at their values at 80.09°C, calculate the value of AvapG at 75.0°C, 80.09°C, and 85.0°C. Hint: Remember that the liquid and vapor phases will be in equilibrium at the normal boiling point.arrow_forward3. The entropy of an ideal gas is S = Nkg In V. Entropy is a state function rather than a path function, and in this problem, you will show an example of the entropy change for an ideal gas being the same when you go between the same two states by two different pathways. A. Express ASV = S2 (V2) - S₁(V1), the change in entropy upon changing the volume from V₁to V2, at fixed particle number N and energy, U. B. Express ASN = S₂(N₂) - S₁ (N₁), the change in entropy upon changing the particle number from N₁ to N2, at fixed volume V and energy U. C. Write an expression for the entropy change, AS, for a two-step process (V₁, N₁) → (V2, N₁) → (V2, N₂) in which the volume changes first at fixed particle number, then the particle number changes at fixed volume. Again, assume energy is constant.arrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forward6. We used the constant volume heat capacity, Cv, when we talked about thermodynamic cycles. It acts as a proportionality constant between energy and temperature: dU = C₁dT. You can also define a heat capacity for constant pressure processes, Cp. You can think of enthalpy playing a similar role to energy, but for constant pressure processes δαρ C = (37) - Sup Ср ат P = ат Starting from the definition of enthalpy, H = U + PV, find the relationship between Cy and Cp for an ideal gas.arrow_forwardPure membranes of dipalmitoyl lecithin phospholipids are models of biological membranes. They melt = 41°C. Reversible melting experiments indicate that at Tm AHm=37.7 kJ mol-1. Calculate: A. The entropy of melting, ASm- B. The Gibbs free energy of melting, AGm- C. Does the membrane become more or less ordered upon melting? D. There are 32 rotatable CH2 CH2 bonds in each molecule that can rotate more freely if the membrane melts. What is the increase in multiplicity on melting a mole of bonds?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning


Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY