Concept explainers
Using the Fundamental Theorem of Line
Want to see the full answer?
Check out a sample textbook solutionChapter 15 Solutions
Calculus
- 人工知能を使用せず、 すべてを段階的にデジタル形式で解決してください。 ありがとう SOLVE STEP BY STEP IN DIGITAL FORMAT DON'T USE CHATGPT Find the integral of the vector function F(t)=(f.,cost)arrow_forwardEvaluate the line integral using Green's Theorem and check the answer by evaluating it directly. ²dx + 2x²dy, where C is the square with vertices (0, 0), (3, 0). (3, 3), and (0, 3) oriented counterclockwise. fy²dx + 2x²dy =arrow_forwardhelp, I got this answer wrongarrow_forward
- Displacement d→1 is in the yz plane 62.8 o from the positive direction of the y axis, has a positive z component, and has a magnitude of 5.10 m. Displacement d→2 is in the xz plane 37.0 o from the positive direction of the x axis, has a positive z component, and has magnitude 0.900 m. What are (a) d→1⋅d→2 , (b) the x component of d→1×d→2 , (c) the y component of d→1×d→2 , (d) the z component of d→1×d→2 , and (e) the angle between d→1 and d→2 ?arrow_forwardA) Evaluate the given line integral directly. B) Evaluate the given line integral by using Green's theorem.arrow_forwardReal Analysis IIarrow_forward
- 人工知能を使用せず、 すべてを段階的にデジタル形式で解決してください。 ありがとう SOLVE STEP BY STEP IN DIGITAL FORMAT DON'T USE CHATGPT 10. Let g(x) and h (y) be differentiable functions, and let f(x,y)=h(y)i+g(x)j. Can fhave a potential F(x,y)? If so, find it. You may assume that F would be smooth. (Hint: Consider the mixed partial derivatives of F.)arrow_forwardUse Green's Theorem in the form of this equation to prove Green's first identity, where D and C satisfy the hypothesis of Green's Theorem and the appropriate partial derivatives of f and g exist and are continuous. (The quantity ∇g · n = Dng occurs in the line integral. This is the directional derivative in the direction of the normal vector n and is called the normal derivative of g.)arrow_forwardsolv part aarrow_forward
- a) Find the value(s) of (1+ i)2/3. b) Show that cos² z + sin? z = 1, for all z = x + iy, , y E R, V-I= i. c) Find a complex valued analytic function f(x, y) = u(x, y) + iv(x, y), whose real part u(x, y) = 213 – 3r?y – 6xy? + y°.arrow_forwardChannel flow The flow in a long shallow channel is modeled by the velocity field F = ⟨0, 1 - x2⟩, where R = {(x, y): | x | ≤ 1 and | y | < 5}.a. Sketch R and several streamlines of F.b. Evaluate the curl of F on the lines x = 0, x = 1/4, x = 1/2, and x = 1.c. Compute the circulation on the boundary of the region R.d. How do you explain the fact that the curl of F is nonzero atpoints of R, but the circulation is zero?arrow_forward1. Consider the function F(x, y, z) = (√/1 – x² − y², ln(e² — z²)). This function is a mapping from R" to Rm. Determine the values of m and n. (b) Is this function scalar-valued or vector-valued? Briefly explain. (c) Determine the domain and range of F and sketch the corresponding regions. (d) Is it possible to visualize this function as a graph? If so, sketch the graph of F.arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,