INTO TO CHEMISTRY (EBOOK ACCESS CODE)
INTO TO CHEMISTRY (EBOOK ACCESS CODE)
5th Edition
ISBN: 9781307892864
Author: BAUER
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 15, Problem 46QP

(a)

Interpretation Introduction

Interpretation:

The type of nuclear decay, the unstable nuclide O819 undergoes, is to be determined.

(a)

Expert Solution
Check Mark

Explanation of Solution

If the NZ ratio is too high, nuclide undergoes beta decay to lower the ratio. If the NZ ratio is too low, nuclide undergoes positron emission or electron capture which increases the ratio.

The mass number A of oxygen is 19 .

The atomic number Z of oxygen is 8 .

The number of neutrons N is calculated using the following expression.

N=AZ=198=11

The NZ ratio using the values of N and Z calculated above is,

NZ=118NZ=1.38

Since the NZ ratio is high, beta decay may occur.

O819  F919 + β10

Therefore, the unstable nuclide, O819 will undergo beta decay.

(b)

Interpretation Introduction

Interpretation:

The type of nuclear decay, the unstable nuclide P91230a undergoes, is to be determined.

(b)

Expert Solution
Check Mark

Explanation of Solution

If the NZ ratio is too high, nuclide undergoes beta decay to lower the ratio. If the NZ ratio is too low, nuclide undergoes positron emission or electron capture, which increases the NZ ratio.

The mass number A of Pa is 230 .

The atomic number Z of Pa is 91 .

The number of neutrons N is calculated using the following expression.

N=AZ=23091=139

The NZ ratio using the values of N and Z calculated above is,

NZ=13991NZ=1.53

Since the NZ ratio is too high, beta decay may occur.

P91230U92230 + β10

Therefore, the unstable nuclide, P91230a will undergo beta decay.

(c)

Interpretation Introduction

Interpretation:

The type of nuclear decay, the unstable nuclide C610 undergoes, is to be determined.

(c)

Expert Solution
Check Mark

Explanation of Solution

If the NZ ratio is too high, nuclide undergoes beta decay to lower the ratio. If the NZ ratio is too low, nuclide undergoes positron emission or electron capture, which increases the ratio.

The mass number A of C is 10 .

The atomic number Z of C is 6 .

The number of neutrons N is calculated using the following expression.

N=AZ=106=4

The NZ ratio using values of N and Z as calculated above is

NZ=46=0.67

Since the NZ ratio is too low, positron emission may occur.

C610  B510 + β10+

Therefore, the unstable nuclide C610 , will undergo positron emission.

(d)

Interpretation Introduction

Interpretation:

The type of nuclear decay, the unstable nuclide N713 undergoes, is to be determined.

(d)

Expert Solution
Check Mark

Explanation of Solution

If the NZ ratio is too high, nuclide undergoes beta decay to lower the ratio. If the NZ ratio is too low, nuclide undergoes positron emission or electron capture, which increases the ratio.

The mass number A of N is 13 .

The atomic number Z of N is 7 .

The number of neutrons N is calculated using the following expression.

N=AZ=137=6

The NZ ratio using the values of N and Z calculated above is,

NZ=67NZ=0.86

Since the NZ ratio is low, positron emission may occur.

N713  C613 + β+10+

Therefore, the unstable nuclide, N713 will undergo positron emission.

(e)

Interpretation Introduction

Interpretation:

The type of nuclear decay, the unstable nuclide P94244u undergoes, is to be determined.

(e)

Expert Solution
Check Mark

Explanation of Solution

If the NZ ratio is too high, nuclide undergoes beta decay to lower the ratio. If the NZ ratio is too low, nuclide undergoes positron emission or electron capture which increases the ratio.

The mass number A of Pu is 244 .

The atomic number Z of Pu is 94 .

The number of neutrons N is calculated using the following expression.

N=AZ=24494=150

The NZ ratio using values of N and Z calculated above is,

NZ=15094NZ=1.6

Since the NZ ratio is too high, beta decay may occur.

P94244u A95244m + β10

Therefore, the unstable nuclide, P94244u will undergo beta decay.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Correct each molecule in the drawing area below so that it has the skeletal ("line") structure it would have if it were dissolved in a 0.1 M aqueous solution of HCI. If there are no changes to be made, check the No changes box under the drawing area. No changes. HO Explanation Check NH, 2 W O :□ G ©2025 M unter Accessibility
An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values ​​have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.
The reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?

Chapter 15 Solutions

INTO TO CHEMISTRY (EBOOK ACCESS CODE)

Ch. 15 - Prob. 5PPCh. 15 - Prob. 6PPCh. 15 - Prob. 7PPCh. 15 - Prob. 8PPCh. 15 - Prob. 9PPCh. 15 - Prob. 10PPCh. 15 - Prob. 11PPCh. 15 - Prob. 1QPCh. 15 - Prob. 2QPCh. 15 - Prob. 3QPCh. 15 - Prob. 4QPCh. 15 - Prob. 5QPCh. 15 - Prob. 6QPCh. 15 - Prob. 7QPCh. 15 - Prob. 8QPCh. 15 - Prob. 9QPCh. 15 - Prob. 10QPCh. 15 - Prob. 11QPCh. 15 - Prob. 12QPCh. 15 - Prob. 13QPCh. 15 - Prob. 14QPCh. 15 - Prob. 15QPCh. 15 - Prob. 16QPCh. 15 - Prob. 17QPCh. 15 - Prob. 18QPCh. 15 - Prob. 19QPCh. 15 - Prob. 20QPCh. 15 - Prob. 21QPCh. 15 - Prob. 22QPCh. 15 - Prob. 23QPCh. 15 - Prob. 24QPCh. 15 - Prob. 25QPCh. 15 - Prob. 26QPCh. 15 - Prob. 27QPCh. 15 - Prob. 28QPCh. 15 - Prob. 29QPCh. 15 - Prob. 30QPCh. 15 - Prob. 31QPCh. 15 - Prob. 32QPCh. 15 - Prob. 33QPCh. 15 - Prob. 34QPCh. 15 - Prob. 35QPCh. 15 - Prob. 36QPCh. 15 - Prob. 37QPCh. 15 - Prob. 38QPCh. 15 - Prob. 39QPCh. 15 - Prob. 40QPCh. 15 - Prob. 41QPCh. 15 - Prob. 42QPCh. 15 - Prob. 43QPCh. 15 - Prob. 44QPCh. 15 - Prob. 45QPCh. 15 - Prob. 46QPCh. 15 - Prob. 47QPCh. 15 - Prob. 48QPCh. 15 - Prob. 49QPCh. 15 - Prob. 50QPCh. 15 - Prob. 51QPCh. 15 - Prob. 52QPCh. 15 - Prob. 53QPCh. 15 - Prob. 54QPCh. 15 - Prob. 55QPCh. 15 - Prob. 56QPCh. 15 - Prob. 57QPCh. 15 - Prob. 58QPCh. 15 - Prob. 59QPCh. 15 - Prob. 60QPCh. 15 - Prob. 61QPCh. 15 - Prob. 62QPCh. 15 - Prob. 63QPCh. 15 - Prob. 64QPCh. 15 - Prob. 65QPCh. 15 - Prob. 66QPCh. 15 - Prob. 67QPCh. 15 - Prob. 68QPCh. 15 - Prob. 69QPCh. 15 - Prob. 70QPCh. 15 - Prob. 73QPCh. 15 - Prob. 74QPCh. 15 - Prob. 75QPCh. 15 - Prob. 76QPCh. 15 - Prob. 77QPCh. 15 - Prob. 78QPCh. 15 - Prob. 79QPCh. 15 - Prob. 80QPCh. 15 - Prob. 81QPCh. 15 - Prob. 82QPCh. 15 - Prob. 83QPCh. 15 - Prob. 84QPCh. 15 - Prob. 85QPCh. 15 - Prob. 86QPCh. 15 - Prob. 87QPCh. 15 - Prob. 88QPCh. 15 - Prob. 89QPCh. 15 - Prob. 90QPCh. 15 - Prob. 91QPCh. 15 - Prob. 92QPCh. 15 - Prob. 93QPCh. 15 - Prob. 94QPCh. 15 - Prob. 95QPCh. 15 - Prob. 96QPCh. 15 - Prob. 97QPCh. 15 - Prob. 98QPCh. 15 - Prob. 99QPCh. 15 - Prob. 100QPCh. 15 - Prob. 101QPCh. 15 - Prob. 102QPCh. 15 - Prob. 103QPCh. 15 - Prob. 104QPCh. 15 - Prob. 105QPCh. 15 - Prob. 106QPCh. 15 - Prob. 107QPCh. 15 - Prob. 108QPCh. 15 - Prob. 109QPCh. 15 - Prob. 110QPCh. 15 - Prob. 111QPCh. 15 - Prob. 112QPCh. 15 - Prob. 113QPCh. 15 - Prob. 114QPCh. 15 - Prob. 115QPCh. 15 - Prob. 116QPCh. 15 - Prob. 117QPCh. 15 - Prob. 118QPCh. 15 - Prob. 119QPCh. 15 - Prob. 120QPCh. 15 - Prob. 121QPCh. 15 - Prob. 122QPCh. 15 - Prob. 123QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning