
Consider the following equilibrium:
COBr2(g) ⇄ CO(g) + Br2(g) Kc = 0.190 at 73 °C
- (a) A 0.50 mol sample of COBr2 is transferred to a 9.50-L flask and heated until equilibrium is attained. Calculate the equilibrium concentrations of each species.
- (b) The volume of the container is decreased to 4.5 L and the system allowed to return to equilibrium. Calculate the new equilibrium concentrations. (Hint: The calculation will be easier if you view this as a new problem with 0.5 mol of COBr2 transferred to a 4.5-L flask.)
- (c) What is the effect of decreasing the container volume from 9.50 L to 4.50 L?
(a)

Interpretation:
The equilibrium concentration of each species in the reaction
Concept Introduction:
Equilibrium constant in terms of concentration
Le Chatelier’s principle: If an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
Factor’s that effect chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactant system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like wise adding products increase yield of reactants.
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases (volume decreases) then equilibrium will shift to the direction having less number of molecules and if pressure decreases (volume increases) system will shift to the direction having more number of molecules.
Answer to Problem 40GQ
The equilibrium concentration of each species when the volume is
Explanation of Solution
To determine:
The equilibrium concentration of each species in the reaction
Given:
(b)

Interpretation:
The equilibrium concentration of each species in the reaction
Concept Introduction:
Equilibrium constant in terms of concentration
Le Chatelier’s principle: If an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
Factor’s that effect chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactant system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like wise adding products increase yield of reactants.
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases (volume decreases) then equilibrium will shift to the direction having less number of molecules and if pressure decreases (volume increases) system will shift to the direction having more number of molecules.
Answer to Problem 40GQ
The equilibrium concentration of each species when the volume is
Explanation of Solution
To determine:
The equilibrium concentration of each species in the reaction
Given:
(c)

Interpretation:
The equilibrium concentration of each species in the reaction
Concept Introduction:
Equilibrium constant in terms of concentration
Le Chatelier’s principle: If an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
Factor’s that effect chemical equilibria:
Concentration – Equilibrium will be affected by changing the concentration of reactant or product. If we increase the concentration of reactant system will try to reverse the change by favouring forward reaction and thus increase the concentration of products. Like wise adding products increase yield of reactants.
Temperature – When the temperature increases equilibrium will shift in the endothermic direction, in the direction that absorbs heat. When the temperature decreases equilibrium will shift in the exothermic direction, in the direction that releases heat.
Pressure – If the reaction consists of only liquid and solid reactants and products, pressure has no effect in the equilibrium.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If pressure increases (volume decreases) then equilibrium will shift to the direction having less number of molecules and if pressure decreases (volume increases) system will shift to the direction having more number of molecules.
Answer to Problem 40GQ
The effect of decreasing volume is explained according to Le Chatelier’s principle.
Explanation of Solution
To determine:
The effect of decreasing volume in equilibrium
The equilibrium concentrations of the species with different volumes are calculated.
When the volume reduces from
According to Le Chatelier’s principle ,if an equilibrium is disturbed by changing conditions, the system will moves the equilibrium to reverse the change.
In gas reactions if the number of moles has no change then there will be no effect by pressure on equilibrium.
If volume decreases then equilibrium will shift to the direction having less number of molecules and if volume increases system will shift to the direction having more number of molecules.
Here volume is reduced and as a result, equilibrium will shift in the direction that has less number of moles.
Therefore, for the above reaction equilibrium will shift to left side and thus concentration of
Conclusion:
The equilibrium concentration of each species in the reaction
Want to see more full solutions like this?
Chapter 15 Solutions
CHEMISTRY+CHEM...(LL)-W/ACCESS >CUSTOM<
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Organic Chemistry
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Brock Biology of Microorganisms (15th Edition)
- By malonic or acetylacetic synthesis, synthesize 2-methylbutanoic acid (indicate the formulas of the compounds).arrow_forwardObtain 2-methylbutanoic acid by malonic or acetylacetic synthesis (indicate the formulas of the compounds involved).arrow_forwardEFFICIENTS SAMPLE READINGS CONCENTRATIONS Pigiadient) TOMATO SAUCE (REGULAR) TOMATO (REDUCED SALT) TOMATO SAUCE (REGULAR) TOMATO (REDUCED SALT) 58 6.274 3.898 301.7 151.2 14150 5.277 3.865 348.9 254.8 B 5.136 3.639 193.7 85.9 605 4.655 3.041 308.6 199.6 05 5.135 3.664 339.5 241.4 0139 4.676 3.662 160.6 87.6 90148 5.086 3.677 337.7 242.5 0092 6.348 3.775 464.7 186.4 PART3 5.081 3.908 223.5 155.8 5.558 3.861 370.5 257.1 4.922 3.66 326.6 242.9 4.752 3.641 327.5 253.3 50 5.018 3.815 336.1 256.0 84 4.959 3.605 317.9 216.6 38 4.96 3.652 203.8 108.7 $3 5.052 3.664 329.8 239.0 17 5.043 3.767 221.9 149.7 052 5.058 3.614 331.7 236.4 5.051 4.005 211.7 152.1 62 5.047 3.637 309.6 222.7 5.298 3.977 223.4 148.7 5.38 4.24 353.7 278.2 5 5.033 4.044 334.6 268.7 995 4.706 3.621 305.6 234.4 04 4.816 3.728 340.0 262.7 16 4.828 4.496 304.3 283.2 0.011 4.993 3.865 244.7 143.6 AVERAGE STDEV COUNT 95% CI Confidence Interval (mmol/L) [Na+] (mg/100 mL) 95% Na+ Confidence Interval (mg/100 mL)arrow_forward
- If we have two compounds: acetone (CH₃COCH₃) and acetic acid (CH₃COOH), applying heat to them produces an aldol condensation of the two compounds. If this is correct, draw the formula for the final product.arrow_forwardIf we have two compounds: acetone (CH3COCH3) and acetic acid (CH3COOH); if we apply heat (A), what product(s) are obtained?arrow_forwardQUESTION: Fill out the answers to the empty green boxes attached in the image. *Ensure you all incorporate all 27 values (per column)*arrow_forward
- You need to make a buffer by dissolving benzoic acid and sodium benzoate in water. What is the mass of benzoic acid that you would weigh out, in mg, to create 50 mL of a buffer at pH = 4.7 that will change pH no more than 0.10 units with the addition of 0.001 moles of acid or base? Enter just the answer without the units (mg) - just the number will do!arrow_forwardDraw the formula for 3-isopropylcyclopentane-1-carbonyl chloride.arrow_forwardQUESTION: Fill out the answers to the empty green boxes attached in the image. *Ensure you all incorporate all 27 values (per column)*arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





